## Derivate Worksheet

1. What does it mean for a function if its derivative at a certain point is negative? What about if the derivative is positive? Zero?
2. For each of the following equations, sketch the tangent lines to the graph at $x=-2, x=0$, and $\mathrm{x}=2$.



3. What is the slope of each of your tangent lines?

Graph 1, $x=-2:$ Slope $=$ $\qquad$
Graph 1, $x=0:$ Slope $=$ $\qquad$
Graph 1, $x=2$ : Slope $=$ $\qquad$
Graph 2, $x=-2$ : Slope $=$ $\qquad$
Graph 2, $x=0:$ Slope $=$ $\qquad$
Graph 2, $\mathrm{x}=2$ : Slope $=$ $\qquad$
Graph 3, $x=-2$ : Slope $=$ $\qquad$
Graph 3, $x=0$ : Slope $=$ $\qquad$
Graph 3, $x=2$ : Slope $=$ $\qquad$
4. What do these tell you about the derivatives of the functions at those points?
5. Without plotting a tangent line, can you determine whether the derivative of the graph of $x^{2}$ (the middle graph) is positive or negative at $\mathrm{x}=4$ ? How do you know? (hint: is the graph sloping upward or downward?)
6. Using the Derivate applet, input the equation $y=\frac{x^{2}}{2}$. Find the derivative at the following points and plot them on the graph provided.
$x=-5$, Derivative $=$ $\qquad$
$x=-3$, Derivative $=$ $\qquad$
$x=-1$, Derivative $=$ $\qquad$
$x=0$, Derivative $=$ $\qquad$
$\mathrm{x}=1$, Derivative $=$ $\qquad$
$x=3$, Derivative $=$ $\qquad$
$x=5$, Derivative $=$ $\qquad$

7. Do these points seem to form a graph? If so, what equation might describe the graph?

