9 Transition States

This laboratory will study the $\mathrm{S}_{\mathrm{N}} 2$ reaction between Cl^{-}and $\mathrm{CH}_{3} \mathrm{Cl}$ involving a Walden inversion.

Construct Cl^{-}and calculate $\Delta_{\mathrm{f}} H$.
Use sp ${ }^{3} \mathrm{Cl}$ with -1 charge. Save as $\mathrm{Cl}-. c s f$.
Experiment / New / Chemical Sample, Heat of Formation, PM3. Record $\Delta_{\mathrm{f}} H\left(\mathrm{Cl}^{-}\right)$ $=$ \qquad kcal mol^{-1}.

Construct $\mathrm{CH}_{3} \mathrm{Cl}$ and optimize.
Use sp ${ }^{3} \mathrm{C}, \mathrm{sp}^{3} \mathrm{Cl}$, beautify comprehensive. Save as CH3Cl.csf.
Experiment / New / Chemical Sample, Optimize Geometry, PM3. Record

$$
\Delta_{\mathrm{f}} H\left(\mathrm{CH}_{3} \mathrm{Cl}\right)=\ldots \mathrm{kcal} \mathrm{~mol}^{-1} .
$$

Construct $\mathrm{ClCH}_{3} \mathrm{Cl}^{-}$and calculate $\Delta_{\mathrm{f}} H$.
Open CH3Cl.csf, use sp ${ }^{3} \mathrm{Cl}$ with -1 charge, single bond. Save as ClCH 3 Cl -.csf. Define the two $\mathrm{C}-\mathrm{Cl}$ bond length labels.

Select the left Cl and C atoms; adjust, atom distance, define geometry label, search 5.0 to 1.5 using 35 steps.

Repeat for the C and the right Cl atoms.
Experiment / New / Reaction and transition state, map reaction, PM3 reaction coordinate (two labels).
The PES should appear with the "ball" indicator at one of the van der Waals complexes. Record the $\mathrm{C}-\mathrm{Cl}$ distances \qquad \AA and \AA (literature $3.27 \AA$ and $1.83 \AA$).
Rotate the PES and move the indicator to the saddle point. Record the $\mathrm{C}-\mathrm{Cl}$ distances \qquad \AA (literature $2.38 \AA$).

Construct the left half of the reaction coordinate diagram.
Open ClCH3Cl-.csf; select the left Cl and C atoms; adjust; atom distance, search between 10.0 and the value of the distance at the saddle point determined above using a sufficient number of steps to generate $0.2 \AA$ changes.
Select the C and right Cl; adjust; atom distance; unselect define geometry label.
Experiment / New / Chemical Sample Conformation, optimized map, PM3 (1 label).
The reaction coordinate diagram should appear with the indicator at the van der Waals complex and record $E=$ \qquad kcal mol^{-1} (choose calc_energy in the drop down menu at the bottom of the reaction coordinate window).
Move the indicator to the transition structure and record $E=$ kcal mol^{-1}.

