9 Transition States

This laboratory will study the S_N2 reaction between Cl^- and CH_3Cl involving a Walden inversion.

Construct Cl⁻ and calculate $\Delta_t H$.

Use sp³ Cl with -1 charge. Save as Cl-.csf.

Experiment / New / Chemical Sample, Heat of Formation, PM3. Record $\Delta_t H(Cl^-)$ = kcal mol⁻¹.

Construct CH₃Cl and optimize.

Use sp³ C, sp³ Cl, beautify comprehensive. Save as CH3Cl.csf.

Experiment / New / Chemical Sample, Optimize Geometry, PM3. Record $\Delta_l H(CH_3Cl) = \underline{\qquad}$ kcal mol⁻¹.

Construct ClCH₃Cl⁻ and calculate $\Delta_f H$.

Open CH3Cl.csf, use sp³ Cl with -1 charge, single bond. Save as ClCH3Cl-.csf. Define the two C-Cl bond length labels.

Select the left Cl and C atoms; adjust, atom distance, define geometry label, search 5.0 to 1.5 using 35 steps.

Repeat for the C and the right Cl atoms.
Experiment / New / Reaction and transition state, map reaction, PM3 reaction
coordinate (two labels).
The PES should appear with the "ball" indicator at one of the van der Waals
complexes. Record the C-Cl distances Å and Å (literature 3.27 Å and 1.83 Å).
Å (literature 3.27 Å and 1.83 Å).
Rotate the PES and move the indicator to the saddle point. Record the C-Cl
distances Å (literature 2.38 Å).
Construct the left half of the reaction coordinate diagram.
Open ClCH3Clcsf; select the left Cl and C atoms; adjust; atom distance, search
between 10.0 and the value of the distance at the saddle point determined
above using a sufficient number of steps to generate 0.2 Å changes.
Select the C and right Cl; adjust; atom distance; unselect define geometry label.
Experiment / New / Chemical Sample Conformation, optimized map, PM3 (1
label).
The reaction coordinate diagram should appear with the indicator at the van de
Waals complex and record $E = \underline{\hspace{1cm}}$ kcal mol ⁻¹ (choose
calc_energy in the drop down menu at the bottom of the reaction
coordinate window).
Move the indicator to the transition structure and record $E = $
kcal mol ⁻¹ .
Calculate $\Delta E_1 = $ kcal mol ⁻¹ (literature 3 ± 1 kcal mol ⁻¹), $\Delta E_2 =$
kcal mol ⁻¹ (literature -12 \pm 2 kcal mol ⁻¹), and ΔE_3 =
kcal mol ⁻¹ (literature 13 ± 2 kcal mol ⁻¹). (Note better agreemen
can be obtained by using a higher level of theory.)