
9 Transition States

This laboratory will study the $S_{\rm N}2$ reaction between ${\rm Cl}^-$ and ${\rm CH_3Cl}$ involving a Walden inversion.

$$Cl^{+} + CH_{+}Cl^{-} - |ClCH_{+}Cl|^{+} - |ClCH_{+} + Cl^{-}|$$

Construct Cl⁻ using the Text Tool.

Find the $\Delta_f H$ by clicking MOPAC / Compute Properties / Theory: PM3 / Properties: Heat of Formation and click Run.

Save as cl-pm3.c3d. Record $\Delta_f H(\text{Cl}^-) = \underline{\hspace{1cm}}$ kcal mol⁻¹. Close.

Construct CH_3Cl using the Text Tool and minimize at the PM3 level. Save as ch3clpm3.c3d. Record $\Delta_f H(CH_3Cl) = \underline{\hspace{1cm}}$ kcal mol⁻¹.

Save as clch3cl-pm3.c3d.

Construct ClCH₃Cl⁻ by adding a Cl⁻ using the Text Tool and connecting the Cl⁻ and the C atom using the Uncoordinated Bond Tool (7th on left) and calculate $\Delta_t H$. Minimize at the PM3 level and record $\Delta_t H$ (ClCH₃Cl⁻) = ______ kcal mol⁻¹.

Save.

Save as clch3cl-tspm3.c3c	d.
Click View / Setup / Mode	el Build and uncheck Rectify. Click OK.
Click the C atom and dra	ng it to the center of the H atoms.
Determine the energy of	the transition structure by clicking MOPAC / Optimize to
Transition State /	Theory: PM3 and click Run.
Save and record $\Delta_{\epsilon}H(\text{ClC})$	CH_3Cl^2ts) = kcal mol ⁻¹ .
	<u> </u>
Calculate $\Delta E_1 = $	kcal mol ⁻¹ (literature 3 ± 1 kcal mol ⁻¹), ΔE_2 =
ko	cal mol ⁻¹ (literature -12 \pm 2 kcal mol ⁻¹), and ΔE_3
ko	cal mol ⁻¹ (literature 13 ±2 kcal mol ⁻¹). Note better agreemen
	`