7 Infrared, Thermochemistry, UV-Vis, and NMR

Exercise 1 Method Dependence and Scaling for the Infrared Spectrum of Formaldehyde.

Open the file ch2ogas.c3d saved in Exercise 3 of Session 6.

Record the values of the vibrational frequencies determined at the PM3 level listed in the Message Window in the table.

Try the scaling factors (AMT $= 0.9532$; FMS $= 0.9701$) if you would like.							
Motion	AM1	Scaled	PM3	Scaled	B3LYP	Experi-	
		AM1		PM3		mental	
						values	
						(cm^{-1})	
						2843	
						2782	
						1746	
						1500	
						1249	
						1167	

Try the scaling factors (AM1 = 0.9532; PM3 = 0.9761) if you would like.

Save as ch2ogasam1.c3d.

Minimize at the AM1 level and save.

Determine the IR/vibrational spectral values at the AM1 level by clicking MOPAC /

Spectral Analysis, click Run, and save.

Record the values in the table of the spectral transitions found in the Message Window.

Chem3D does not have *ab initio* capabilities. However, Chem3D serves as a graphical interface to Gaussian '03 for various *ab initio* calculations.

Using Gaussian '03

Save ch2ogasam1.c3d as ch2ogaussian.c3d.

Minimize by clicking Gaussian / Minimize Energy / Theory. Choose Method: B3LYP, Basis Set: 6-31G, Polarization: Heavy Atom d.

Click Run and save.

Click Gaussian / Spectral Analysis / Theory B3LYP 6-31Gd and click Run.

Save the structure and record the values in the table for the vibrational transitions that appear in the Message Window.

Exercise 2 $\Delta_r H$ for an Isodesmic Reaction.

An isodesmic reaction is one in which the total number of each type of chemical bond $H_3C-C-H + H_3C-CH_3 \longrightarrow H_3C-C-CH_3 + CH_4$ is the same in both reactants and products. Because of this equality in bond type, results of calculations using such a reaction should benefit from cancellation of errors.
Build a molecule of acetone using the Text Tool and save as acetoneam1.c3d.
Minimize at the AM1 level and record the $\Delta_{\rm f} H = $ kcal mol ⁻¹ .
Save.
Save as acetonepm3.c3d and minimize at the PM3 level. Save and record the $\Delta_{f}H = $ kcal mol ⁻¹ .
Close.
Repeat the above calculations for methane. Save the results as methaneam1.c3d and methanepm3.c3d. $\Delta_{f}H(AM1) = $ kcal mol ⁻¹ , $\Delta_{f}H(PM3) = $ kcal mol ⁻¹ .
Repeat the above calculations for acetaldehyde. Save the results as
acetaldehydeam1.c3d and acetaldehydepm3.c3d. $\Delta_{\rm f}H({\rm AM1}) =$ kcal mol ⁻¹ , $\Delta_{\rm f}H({\rm PM3}) =$ kcal mol ⁻¹ .
Repeat the above calculations for ethane. Save the results as ethanem1.c3d and ethanepm3.c3d. $\Delta_{f}H(AM1) = _$ kcal mol ⁻¹ , $\Delta_{f}H(PM3) = _$
kcal mol ⁻¹ .

To find $\Delta_{\mathbf{r}} H$ for the reaction:

$$H_{3}C-C-H + H_{3}C-CH_{3} \longrightarrow H_{3}C-C-CH_{3} + CH_{4}$$

use $\Delta_r H = \sum \Delta_f H$ (products) - $\sum \Delta_f H$ (reactants). Place your results in the table below and compare with the experimental value.

AM1	PM3	ab initio	Experimental (kcal mol ⁻¹)
			-9.9 ± 0.3

Chem3D does not have *ab initio* capabilities. However, Chem3D serves as a graphical interface to Gaussian '03 for various *ab initio* calculations and to GAMESS for Hartree-Fock *ab initio* calculations.

Using Gaussian '03

Open acetonepm3.c3d and save as acetonegaussian.c3d.

Click Gaussian / Minimize Energy / Theory. Choose Method: B3LYP, Basis Set: 6-31G, Polarization: Heavy Atom d.

Click Run. (This calculation may take several minutes.) Record the value of E =_____ h.

Close and save the structure.

Repeat the calculations for methanepm3.c3d, acetaldehydepm3.c3d, and

ethanepm3.c3d. Record the value of $E(CH_4) =$ _____h, $E(CH_3CHO) =$ _____h, $E(CH_3CH_3) =$ _____h. Calculate $\Delta_r H$ using $\Delta_r H = \Delta_r E = [\sum E(\text{products}) - \sum E(\text{reactants})](627.51 \text{ kcal mol}^{-1}/h) =$ _____kcal mol^{-1}.

Using GAMESS

Open acetonepm3.c3d and save as acetonegamess.c3d.

Click Gamess / Minimize Energy / Theory. Choose Method: Hartree-Fock, Basis Set: 6-31G, Polarization: Heavy Atom d.

Click Run. (This calculation may take several minutes.) Record the value of E =_____ h.

Close and save the structure.

Repeat the calculations for methanepm3.c3d, acetaldehydepm3.c3d, and

ethanepm3.c3d. Record the value of $E(CH_4) =$ _____h, $E(CH_3CHO) =$ _____h, $E(CH_3CH_3) =$ _____h. Calculate $\Delta_r H$ using $\Delta_r H = \Delta_r E = [\sum E(\text{products}) - \sum E(\text{reactants})](627.51 \text{ kcal mol}^{-1}/h) =$ _____kcal mol^{-1}.