3 Choice of Theoretical Method

Exercise 1 Determine the Proton Affinity for Pyridine using MMX.

Build a molecule of C_5H_5N by constructing a hexagon of C atoms using the draw tool. Click to periodic table tool, choose N, click on one of the C atoms, and close the periodic table. Click on the add bond tool and change every other bond to a double bond by clicking in the middle of the bonds. Click the add H tool to add the H atoms. Click Mark / Pi Atoms, choose All, and click OK. The small \sim symbols represent the conjugated π atoms.

Save as PYRMMX.pcm.

- Calculate $\Delta_t H$ by selecting Compute / Minimize using MMX. Record the value kcal mol⁻¹ and save the structure.
- Build the $C_5H_5NH^+$ structure by clicking the add H tool to remove the H atoms, clicking the periodic table tool, choosing N+, and clicking on the N atom of the C_5H_5N structure. Close the periodic table and click the add H tool.
- Save as HPYRMMX.pcm. Click Compute / Minimize using MMX. Record the value _____ kcal mol⁻¹ and save the structure.
- Given $\overline{\Delta_{\rm f}H}=367.161$ kcal mol⁻¹ for H⁺, calculate the $\Delta_{\rm r}H={\rm PA}$ for $C_5H_5N+H^+ \rightarrow C_5H_5NH^+$ using $\Delta_{\rm r}H=\Delta_{\rm f}H(C_5H_5NH^+)$ $[\Delta_{\rm f}H(C_5H_5N)+\Delta_{\rm f}H(H^+)]=$ kcal mol⁻¹.

The literature value is -219.2 ± 1.7 kcal mol⁻¹. Calculate the percent difference = _____.

Save and Close.

Exercise 2 Determine the Proton Affinity for Pyridine using Other Molecular Mechanics Methods.

- Repeat the above exercise using any of the other available molecular mechanics methods available in PCModel.
- Using the calculated energies and $\Delta_t H = 367.161 \text{ kcal mol}^{-1}$ for H⁺, calculate PA for $C_5H_5N + H^+ \rightarrow C_5H_5NH^+$

using $\Delta_r H = \Delta_f H(C_5 H_5 N H^+) - [\Delta_f H(C_5 H_5 N) + \Delta_f H(H^+)] =$ _____kcal mol⁻¹.

Calculate the percent difference = _____.

Exercise 3 Determine the Proton Affinity for Pyridine using PM3 and B3LYP/6-31G(d).

If GAUSSIAN or GAMESS is available, rerun the above calculations at these levels of theory, calculate the value of PA, and calculate the percent difference.