3 Choice of Theoretical Method

Exercise 1 Determine the Proton Affinity for Pyridine using MMX.

Build a molecule of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ by constructing a hexagon of C atoms using the draw tool. Click to periodic table tool, choose N, click on one of the C atoms, and close the periodic table. Click on the add bond tool and change every other bond to a double bond by clicking in the middle of the bonds. Click the add H tool to add the H atoms. Click

pyridine Mark / Pi Atoms, choose All, and click OK. The small ~ symbols represent the conjugated π atoms.
Save as PYRMMX.pcm.
Calculate $\Delta_{\mathrm{f}} H$ by selecting Compute / Minimize using MMX. Record the value kcal mol^{-1} and save the structure.
Build the $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$structure by clicking the add H tool to remove the H atoms, clicking the periodic table tool, choosing $\mathrm{N}+$, and clicking on the N atom of the $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ structure. Close the periodic table and click the add H tool.
Save as HPYRMMX.pcm. Click Compute / Minimize using MMX. Record the value kcal mol^{-1} and save the structure.

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}
$$

using $\Delta_{\mathrm{r}} H=\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)-\left[\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)+\Delta_{\mathrm{f}} H\left(\mathrm{H}^{+}\right)\right]=$ \qquad kcal mol^{-1}.
The literature value is $-219.2 \pm 1.7 \mathrm{kcal} \mathrm{mol}^{-1}$. Calculate the percent difference $=$
Save and Close.

Exercise 2 Determine the Proton Affinity for Pyridine using Other Molecular Mechanics Methods.

Repeat the above exercise using any of the other available molecular mechanics methods available in PCModel.
Using the calculated energies and $\Delta_{\mathrm{f}} H=367.161 \mathrm{kcal} \mathrm{mol}^{-1}$ for H^{+}, calculate PA for

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}
$$

using $\Delta_{\mathrm{r}} H=\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)-\left[\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)+\Delta_{\mathrm{f}} H\left(\mathrm{H}^{+}\right)\right]=$ \qquad kcal mol^{-1}.
Calculate the percent difference $=$ \qquad .

Exercise 3 Determine the Proton Affinity for Pyridine using PM3 and B3LYP/ 6-31G(d).

If GAUSSIAN or GAMESS is available, rerun the above calculations at these levels of theory, calculate the value of PA , and calculate the percent difference.

