3 Choice of Theoretical Method

Exercise 1 Determine the Proton Affinity for Pyridine using AM1.

- Using the "ball and cylinder" view, build a molecule of C_5H_5N using sp² C and N atoms. Clean up the structure by selecting Beautify / comprehensive.
- Save as pyram1.csf. Calculate $\Delta_{f}H$ by selecting Experiment / New and selecting chemical sample optimized geometry using AM1 geometry. Record the value ______ kcal mol⁻¹ and save the structure.

- Build the $C_5H_5NH^+$ structure by adding a H atom to the N atom and placing a +1 charge on the N atom. Clean up the structure by selecting Beautify / Comprehensive.
- Save as hpyram1.csf. Calculate $\Delta_f H$ by selecting Experiment / New and selecting chemical sample optimized geometry using AM1 geometry. Record the value kcal mol⁻¹ and save the structure.

Given
$$\overline{\Delta_{f}H} = 367.161 \text{ kcal mol}^{-1}$$
 for H⁺, calculate the $\Delta_{r}H = PA$ for
 $C_{5}H_{5}N + H^{+} \rightarrow C_{5}H_{5}NH^{+}$
using $\Delta_{r}H = \Delta_{f}H(C_{5}H_{5}NH^{+}) - [\Delta_{f}H(C_{5}H_{5}N) + \Delta_{f}H(H^{+})] =$ _____ kcal
mol⁻¹.

The literature value is -219.2 ± 1.7 kcal mol⁻¹. Calculate the percent difference =

Exercise 2 Determine the Proton Affinity for Pyridine using PM3.

- Using the "ball and cylinder" view, build a molecule of C₅H₅N using sp² C and N atoms. Clean up the structure by selecting Beautify / Comprehensive.
- Save as pyrpm3.csf. Calculate $\Delta_{f}H$ by selecting Experiment / New and selecting chemical sample optimized geometry using PM3 geometry. Record the value kcal mol⁻¹ and save the structure.
- Build the $C_5H_5NH^+$ structure by adding a H atom to the N atom and placing a +1 charge on the N atom. Clean up the structure by selecting Beautify / Comprehensive.
- Save as hpyrpm3.csf. Calculate $\Delta_{f}H$ by selecting Experiment / New and selecting chemical sample optimized geometry using PM3 geometry. Record the value kcal mol⁻¹ and save the structure.

Given $\overline{\Delta_{f}H} = 367.161 \text{ kcal mol}^{-1}$ for H⁺, calculate the $\Delta_{r}H = PA$ for $C_{5}H_{5}N + H^{+} \rightarrow C_{5}H_{5}NH^{+}$ using $\Delta_{r}H = \Delta_{f}H(C_{5}H_{5}NH^{+}) - [\Delta_{f}H(C_{5}H_{5}N) + \Delta_{f}H(H^{+})] =$ _____ kcal mol}^{-1}.

Calculate the percent difference = _____.

Exercise 3 Determine the Proton Affinity for Pyridine using B88LYP/DZVP.

- Using the "ball and cylinder" view, build a molecule of C_5H_5N using sp² C and N atoms. Clean up the structure by selecting Beautify / Comprehensive.
- Save as pyrdft.csf. Optimize the structure by selecting Experiment / New and selecting chemical sample optimized geometry using B88-LYP DFT geometry. (This calculation may take several minutes.)
- Calculate the thermodynamic properties of the molecule by selecting Experiment / New and selecting chemical sample IR transitions using B88-LYP DFT IR spectra. (This calculation may take several minutes.)
- Navigate to the pyrdft.io folder and open Dgauss Log using Word Pad. Record the enthalpy at 298 K and save the structure. $H = _$ ____ h.
- Build the $C_5H_5NH^+$ structure by adding a H atom to the N atom and placing a +1 charge on the N atom. Clean up the structure by selecting Beautify / Comprehensive.
- Save as hpyrdft.csf. Optimize the structure by selecting Experiment / New and selecting chemical sample optimized geometry using B88-LYP DFT geometry. (This calculation may take several minutes.)
- Calculate the thermodynamic properties of the molecule by selecting Experiment / New and selecting chemical sample IR transitions using B88-LYP DFT IR spectra. (This calculation may take several minutes.)
- Navigate to the hpyrdft.io folder and open Dgauss Log using Word Pad. Record the enthalpy at 298 K and save the structure. $H = _$ ____ h.
- Given $H(H^+) = 1.481$ kcal mol⁻¹, calculate the $\Delta_r H$ for

 $C_5H_5N + H^+ \rightarrow C_5H_5NH^+$

using $\Delta_{r}H = [H(C_{5}H_{5}NH^{+}) - H(C_{5}H_{5}N)](627.51 \text{ kcal mol}^{-1}/h) + H(H^{+}) =$ ______kcal mol^{-1}.

Calculate the percent difference = _____.