## 3 Choice of Theoretical Method

## Exercise 1 Determine the Proton Affinity for Pyridine using AM1.

Open / HyperChem.
Build a molecule of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$. Double click the Draw Tool and choose C.
Draw a hexagon of C atoms connected by single bonds. Double click one of the bonds to make the ring aromatic (a circle inside the hexagon will appear). Choose N and click on one of the C atoms to

pyridine change it to the N atom.
Double click the Select Tool.
Save as pyraml.HIN.
Minimize using AM1 by clicking Setup / Semiempirical and click AM1. Choose Compute / Geometry Optimization and click OK. Be sure that the Status Line indicates CONV=YES.
Click Compute / Properties / Total Energy: Details and record the value of $\Delta_{\mathrm{f}} H=$ kcal mol ${ }^{-1}$.
Save the structure.
Build the $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$structure by selecting the N atom and placing a +1 charge on it. Click the N atom and click Build / Set Formal Charge $/+1$.
Double click the Select Tool.
Save as hpyraml.HIN.
Minimize using AM1 geometry. Record the value of $\Delta_{\mathrm{f}} H=$ $\qquad$ kcal mol ${ }^{-1}$ and save the structure.
Given $\Delta_{\mathrm{f}} H=367.161 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}^{+}$, calculate the $\Delta_{\mathrm{r}} H=\mathrm{PA}$ for

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}
$$

using $\Delta_{\mathrm{r}} H=\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)-\left[\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)+\Delta_{\mathrm{f}} H\left(\mathrm{H}^{+}\right)\right]=$ $\qquad$ kcal $\mathrm{mol}^{-1}$.
The literature value is $-219.2 \pm 1.7 \mathrm{kcal} \mathrm{mol}^{-1}$. Calculate the percent difference $=$
Close the workspace.

## Exercise 2 Determine the Proton Affinity for Pyridine using PM3.

Open pyraml.HIN and save as pyrpm3.HIN.
Calculate $\Delta_{\mathrm{f}} H$ using PM3 geometry. Record the value of $\Delta_{\mathrm{f}} H=$ $\qquad$ kcal mol ${ }^{-1}$ and save the structure.
Close the workspace.
Open hpyraml.HIN and save as hpyrpm3.HIN.
Calculate $\Delta_{\mathrm{f}} H$ using PM3 geometry. Record the value of $\Delta_{\mathrm{f}} H=$ $\qquad$ $\mathrm{kcal} \mathrm{mol}^{-1}$ and save the structure.
Given $\Delta_{\mathrm{f}} H=367.161 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}^{+}$, calculate the $\Delta_{\mathrm{r}} H=\mathrm{PA}$ for

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \\
& \text {using } \Delta_{\mathrm{r}} H=\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)-\left[\Delta_{\mathrm{f}} H\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)+\Delta_{\mathrm{f}} H\left(\mathrm{H}^{+}\right)\right]=\quad \\
& \text { mol }^{-1} \text {. }
\end{aligned}
$$

Calculate the percent difference $=$
Close the workspace.

## Exercise 3 Determine the Proton Affinity for Pyridine using ab initio Methods.

Open pyrpm3.HIN and save as pyrdft.HIN.
Click Setup / Density Functional. Choose 6-31* for the Orbital Basis Set. Click Exchange Correlations / B3-LYP and click OK. Click OK.
Click Compute / Geometry Optimization.
Click Run. (This calculation may take several hours.) Record the value of $E=$ kcal mol ${ }^{-1}$ shown in the Status Line.
Save the structure.
Open hpyrpm3.HIN and save as hpyrdft.HIN.
Calculate the minimum energy as above. Record the value of $E=$ $\qquad$ kcal $\mathrm{mol}^{-1}$.
Save the structure.
Calculate the $\Delta_{\mathrm{r}} H$ for

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}
$$

using $\Delta_{\mathrm{r}} H=\Delta_{\mathrm{r}} E=E\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)-E\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)=\quad \mathrm{kcal} \mathrm{mol}^{-1}$.
Calculate the percent difference $=$ $\qquad$ .

