1 Introduction to Computational Chemistry

Start HyperChem by clicking Start / Programs / HyperChem Release 7 / HyperChem Professional

Exercise 1 Study of H-X-H Bond Angles (suitable for general chemistry).
Structure of CH_{4}
Double click the Drawing Tool ($1^{\text {st }}$ across). An Element Table appears.
Click on C and close.
Click in the workspace and a small blue circle appears representing a C atom appears. Double click the Select Tool ($2^{\text {nd }}$ across) and CH_{4} appears.
Click the Rotate Out of Plane Tool ($3^{\text {rd }}$ across). Click and drag to rotate the molecule. Likewise, click the Rotate in Plane Tool and rotate the molecule.
Click Select Tool.
This structure contains idealized bond lengths and angles. A more accurate structure can be found by carrying out an energy minimization using molecular mechanics, semi-empirical methods, or ab initio calculations. To reduce the time required for the calculations and to obtain reasonable results, the semi-empirical method PM3 will be used. This method is available in most molecular modeling programs.
Click File / Save.

Save using CH4PM3.HIN.
Click Setup / Semiempirical / PM3 and click OK.
Click Compute / Geometry Optimization and click OK.
The calculations should be completed within a second or so.
Click File / Save.
Click midway over a C-H bond.
Record the value of the C-H bond length \qquad \AA (1.091 Å literature) shown in the Status Line at the bottom of the workspace. Right click to unselect the bond.
Click on one of the H atoms, click the C atom, and click on one of the other H atoms (a $\mathrm{H}-\mathrm{C}-\mathrm{H}$ combination should be highlighted).
Record the value of the H-C-H bond angle \qquad ${ }^{\circ}\left(109.4712^{\circ}\right.$ literature $)$ shown in the Status Line.
Save the workspace.

Structure of NH_{3}
Click File / New.
Build NH_{3} using the above procedure.
Save the file as NH3PM3.HIN.
Perform the PM3 geometry optimization as above.
Record the value of the N-H bond length \qquad $\AA(\sim 0.999 \AA, 1.012 \AA$ literature $)$.

Record the value of the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle \qquad ${ }^{\circ}\left(\sim 108.2^{\circ}, 106.67^{\circ}\right.$ literature $)$. Save.

Structure of $\mathrm{H}_{2} \mathrm{O}$
Click File / New.
Build $\mathrm{H}_{2} \mathrm{O}$ using the above procedure.
Save the file as H2OPM3.HIN.
Perform the PM3 geometry optimization as above.
Record the value of the $\mathrm{O}-\mathrm{H}$ bond length \qquad $\AA(\sim 0.951 \AA, 0.959 \AA$ literature $)$.
Record the value of the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle \qquad ${ }^{\circ}\left(\sim 107.7^{\circ}, 103.9^{\circ}\right.$ literature $)$.
Save.

What conclusion(s) can you make concerning the $\mathrm{H}-\mathrm{X}-\mathrm{H}$ bond angle and the number of unshared (lone) pairs of electrons around the central atom X?

Exercise 2 Study of Rotation Barrier Energy about Carbon-Carbon Bonds (suitable for organic chemistry).

Structure of Ethane, $\mathrm{CH}_{3} \mathrm{CH}_{3}$
Click File / New.
Double click the Drawing Tool and choose C as the atom.
Click and drag in center of workspace (a blue line representing a C-C bond appears).
Double click the Select Tool $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right.$ appears).
Save as C2H6PM3.HIN.
Perform a PM3 optimization.
Save.
Click Select Tool.
Click Display / Labels / Number and click OK.
Click H atom 6. Click the attached C atom 2, the other C atom 1, and the H atom 5 to define a "dihedral" (or "torsion") angle. The value of the dihedral angle appears in the Status Line.
Click Compute / Potential. Enter -180, 180, 10 and click OK. After a few seconds an energy plot will appear.
Click Properties / Data / Data Values.
Scroll through the values and record the greatest and least values of the energy and calculate the barrier energy for rotation of the CH_{3} groups around a C-C bond
\qquad $\mathrm{kcal} \mathrm{mol}^{-1}$ - $\mathrm{kcal} \mathrm{mol}^{-1}=$ \qquad $\mathrm{kcal} \mathrm{mol}^{-1}$ (2.9 kcal mol^{-1} literature).
Close the worksheet.

Structure of Ethene, $\mathrm{CH}_{2} \mathrm{CH}_{2}$
Click File / New.
Double click the Drawing Tool and choose C as the atom.

Click and drag in center of workspace (a blue line representing a C-C bond appears).
Click on the blue line (two blue lines appear representing a $\mathrm{C}=\mathrm{C}$ bond appears).
Double click the Select Tool ($\mathrm{CH}_{2} \mathrm{CH}_{2}$ appears).
Save as C2H4PM3.HIN.
Perform a PM3 optimization.
Save.
Click Select Tool.
Define a HCCH dihedral angle using H atoms cis to each other and open.
Click Compute / Potential. Enter 0, 180, 10 and click OK. After a few seconds an energy plot will appear. Does the maximum energy occur at 90° ? \qquad
Click Properties / Data / Data Values.
Scroll through the values and record the greatest and least values of the energy and calculate the barrier energy for rotation of the CH_{2} groups around a $\mathrm{C}=\mathrm{C}$ bond
\qquad
\qquad $\mathrm{kcal} \mathrm{mol}^{-1}=$ \qquad $\mathrm{kcal} \mathrm{mol}^{-1}(2.9 \mathrm{kcal}$ mol^{-1} literature).
Close.

Exercise 3 Study of the Molecular Orbitals in Ethene, $\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}}$ (suitable for physical chemistry).

Click File / Open.
Choose C2H4PM3.HIN.
Click Save As C2H4surfacesPM3.HIN.
Click Compute / Geometry Optimization.
Save the file.
Click Compute / Orbitals.
Choose Number $=1 /$ Plot to observe the σ bonding between the C atoms (Close Orbital box and rotate structure if desired.) Various presentations (wire mesh, dots, translucent) can be chosen by selecting Options.
Repeat for the various orbitals. The π bonding between the C atoms is Number $=6$ and the LUMO showing the π^{*} antibonding is LUMO Number $=7$.
Close the Orbital window and right click in the worksheet to remove the orbital.
Click Compute / Plot Molecular Graphs / Molecular Properties: Electrostatic Potential and Mapped Function Options: -1, 1. Click OK.
Close and save all windows.
Exit HyperChem.

