
1

Scientific Visualization
with CUDA and OpenGL

Robert Hochberg and John Riselvato

Shodor

2

Module Overview

The goal of this module is to teach one pathway for offloading parts of a scientific computation
onto a CUDA-enabled GPU, and for using OpenGL to visualize the results of that computation.
To keep the focus on CUDA and OpenGL, we select a purely number-theoretic scientific
problem with a relatively simple associated computation.

The scientific question:
We’ll be looking at the function and investigating what happens when, for
various values of a, we iterate this function. That is, we are interested in what happens when we
start with some value x and look at the sequence of numbers:

. Although we are interested in this as a purely mathematical
question, exploration of such quadratic iterations has several scientific applications, including
chaos theory.

When a = −1, the function has a point of period 2, that is, a value x such that
f(f(x)) = x. Observe that our sequence: starting with x = −1
goes: −1, 0, −1, 0, . . ., a repeating sequence with period 2. The same function has a point of

period 1, also called a fixed point, namely , the so-called golden ratio, For this value,
. For this module, however, we will not be interested in values of x or a that are not

rational, that is, are not ratios of whole numbers. So this fixed point does not really interest us.
You can quickly verify that the function has no rational fixed points by solving the
equation and seeing that both its roots (one of which is the golden ratio) are
irrational.

Quick Question: Find a rational value of a so that the function does have a
rational point of period 1. [some answers include {a=2, x=2} and {a=−15/4, x=5/2}.]

Our question is this: Does there exist a rational number a such that the function
has a rational point of period 7? At the time of writing, the answer is unknown. See
[http://people.maths.ox.ac.uk/flynn/arts/art11.pdf] for a very interesting mathematical treatment
of this question.

Numeric Approach

Our approach in this module will be to consider the quantity (where means
the nth iteration of the function), which is zero whenever x is a point of period n. Each
value of a gives rise to a function , and each value of x is a potential starting
point for an iteration. So for each n we may define the two-variable function to be the

value of , where x is the starting point and . We then search
numerically for a fixed point of period n by searching for a suitable rational a and x having

 = 0. Given some range of a values: and range of x values:
 we subdivide each range into values

3

 and and
plot the function for each pair of values in this interval.

We may think of the domain of our computation as a grid, as shown in the picture below.

We plot in two ways: First, we produce a “height” which corresponds to , so that
when this value is 0, we know that x is a point of period n. We also produce a color
which corresponds (in a loose way) to how close is to a rational number. This is a bit
silly, since every real number is arbitrarily close to a rational number. But we want to measure
how close it is to a rational number with a small denominator. We use an algorithm based on
continued fractions in the denomVal() function. It’s very heuristic, and we don’t describe it
here. The reader is invited to experiment with, and suggest to the authors, better versions of the
denomVal() function.

For each pair we compute the value and plot a quadrilateral in 3-

dimensional space with coordinates { , ,

, } in the color . Plotted
together these form a surface in 3-space. To make things a bit easier to see, we also make use
of a threshold so that we plot a quadrilateral only if all four of its corners’ associated
values are less than that threshold. A sample screenshot is shown below. The left one, at low
resolution, shows the individual quadrilaterals. The one on the right is of higher resolution, and
the quadrilaterals can no longer be distinguished very easily.

4

First Approach --- Single CPU

Our first implementation will use a single CPU, and does not use CUDA. We have two global

arrays: hResults holding the values of , and hDenomVals, holding values related
to the denominators of the fractions, that we use to assign the colors. (Here, “h” stands for
“host,” in contrast to the “device.” When we use CUDA we will have “dResults” for the array
residing on the CUDA card, the “device,” as well as “hResults” for its copy on the host
computer.

In the recompute() function below, the parameters xmin and xmax define the range for x,

and xstep is the size of the step from one value of x to the next, that is, .
Same thing for amin, amax and astep. numIt is the number of iterations that the function
should perform. This is “n” in the discussion above. We store hResults and hDenomVals in one-
dimensional arrays, but we think of them as two-dimensional arrays. The variable stride gives
the width of the 2-d arrays holding the values, so that the (i, j) entry is at location
(i*stride+j) in the arrays. Global variables acount and xcount give the number of steps in
each direction, so that we compute acount*xcount many entries altogether.

The recompute() function does all of the work of computing the values of . It calls
the denomVal() function to get information about the “rationalness” of the numbers, used for
coloring.

void recompute(double xmin, double xmax, double xstep,
 double amin, double amax, double astep,
 int numIt, size_t stride){

5

 // How many entries do we need? Set these global values.
 xcount = (size_t)ceil((xmax - xmin)/xstep);
 acount = (size_t)ceil((amax - amin)/astep);

 double newxval, xval, aval;
 int xp = 0, ap = 0;
 for(xval = gxmin; xval <= gxmax; xval += gxstep){
 ap = 0;
 for(aval = gamin; aval <= gamax; aval += gastep){
 double originalXval = xval;
 newxval = xval;

 // Perform the iteration
 for(int i = 0; i < iterations; i++) //Iterate
 newxval = newxval * newxval + aval;

 // Fill the d_n(x, a) and color arrays.
 hResults[ap*stride+xp] = newxval - originalXval;
 hDenomVals[ap*stride+xp] =
 denomVal(fabs(newxval-originalXval), fabs(aval), gdepth);
 ap++;
 }
 xp++;
 }
}

Once these two arrays have been filled with numbers, we render them to the screen using
OpenGL, as described in the next section.

Drawing with OpenGL

Introduction to OpenGL
OpenGL (Open Graphics Library) is a hardware independent, cross-platform, cross-language
API for developing graphical interfaces. It takes simple points, lines and polygons and gives the
programmer the ability to create outstanding projects.

Our model uses GLUT for the simplest way of handling window display, and for Mouse and
Keyboard callbacks. To use GLUT for managing tasks, you should include it in your header file:
	
#include	 <GL/glut.h>	

	
Displaying a Window
To display a window, five necessary initial functions are required.

● glutInit(&argc,	 argv) should be called before any other GLUT function. This
initializes the GLUT library.	

6

● glutInitDisplayMode(mode)	 which is used to determine color display and buffer
mode to be used. More information on modes here:
http://www.opengl.org/documentation/specs/glut/spec3/node12.html	

● glutInitWindowSize	 (int	 x,	 int	 y) specifies the size for the application.	
● glutInitWindowPosition	 (int	 x,	 int	 y) specifies the location on screen for the

upper-left corner of the window	
● glutCreateWindow(char*	 string)	 creates the window, but requires

glutMainLoop()	 for actual display. The string will create the window’s label.	

The above required functions should be called in an init() function. Our module’s init function
is	 initGlutDisplay(argc,	 argv). In the same init function, glutMainLoop() should be
called as the last routine; this ties everything together and runs the main loop. Example 1.0,
shown below, is a complete, self-contained OpenGL program that draws a red square inside a
square window 300 pixels on a side.

Example 1.0: Hello World
#include	 <GL/gl.h>	
#include	 <GL/glut.h>	
	
void	 displayForGlut(void){	
	 	 //clears	 the	 pixels	
	 	 glClear(GL_COLOR_BUFFER_BIT);	
	 	 glColor3f(1.0,	 0.0,	 0.0);	
	 	 glBegin(GL_QUADS);	
	 	 glVertex3f(0.10,	 0.10,	 0.0);	
	 	 glVertex3f(0.9,	 0.10,	 0.0);	
	 	 glVertex3f(0.9,	 0.9,	 0.0);	
	 	 glVertex3f(0.10,	 0.9,	 0.0);	
	 	 glEnd();	
	 	 glFlush();	
}	
	
int	 initGlutDisplay(int	 argc,	 char*	 argv[]){	
	 	 glutInit(&argc,	 argv);	
	 	 glutInitDisplayMode(GLUT_RGB);	
	 	 glutInitWindowSize(300,	 300);	
	 	 glutInitWindowPosition(100,	 100);	
	 	 glutCreateWindow("Example	 1.0:	 Hello	 World!");	
	 	 glMatrixMode(GL_PROJECTION);	
	 	 glLoadIdentity();	
	 	 glOrtho(0.0,	 1.0,	 0.0,	 1.0,	 -‐1.0,	 1.0);	
	 	 glutDisplayFunc(displayForGlut);	
	 	 glutMainLoop();	
	 	 return	 0;	
}	
	
int	 main(int	 argc,	 char*	 argv[]){	
	 	 initGlutDisplay(argc,	 argv);	

7

}	

Callbacks
GLUT uses a great system of callbacks for both drawing its display and reacting to user input. In
Example 1.0, the display is drawn in the displayForGlut() function. This function is called
whenever OpenGL needs to redraw its window. The way we tell OpenGL to use this function
whenever it wants to redraw the window is by registering displayForGlut() as a callback
function. The line glutDisplayFunc(displayForGlut) within the initGlutDisplay() function
accomplishes this. It tells OpenGL that whenever this window needs to redraw itself, execute
the displayForGlut() function. In other parts of the code we may use the OpenGL command
glutPostRedisplay() to ask OpenGL to redraw the window.

In general, we register our callback functions when we first initialize a window, and then these
callbacks run whenever the appropriate event requires them. In the provided code file
squareExplore.c we register all callbacks in our initGlutDisplay()	 function. In example
1.0, we used the glutDisplayFunc() callback to get to our display method. Keyboard, mouse,
and mouse motion all have their own callback functions:

● glutKeyboardFunc() registers the callback for ordinary keyboard input.	
● glutSpecialFunc() registers the callback for special keyboard input such as function

keys and arrow keys.	
● glutMouseFunc()	 registers the function that responds to mouse clicks.	
● glutMotionFunc()	 registers the function that responds to mouse “drags.”	
● glutPassiveMotionFunc() registers the function that responds to mouse motions in

the window when a button is not depressed.	
We use three of these callbacks in squareExplore.c, but all five of them among the original
code, the exercises and the solutions to the exercises. For more information about callbacks
and OpenGL, see the online reference:
http://www.opengl.org/documentation/specs/glut/spec3/node45.html.

Our Callbacks
Our model uses several callback functions for an enriched user experience:

● displayForGlut() callback function is registered to OpenGL by the
glutDisplayFunc() registration function. We use displayForGlut() for most of our
display, including the graphing iterations and handling text.	

● kbdForGlut()	 callback function is registered to OpenGL by the glutKeyboardFunc()	
registration	 function. We use this callback for non-special keys such as a-z and A-
Z. Certain keys in our model provide a visual change in the display. As explained before,
glutPostRedisplay() is called at the end of this method for redisplay.	

● arrowsForGlut()	 callback function is registered to OpenGL by the
glutSpecialFunc()	 registration function. Glut organizes special keys such as the
arrow keys and ctrl key in this callback. We use it for the arrow keys, which allow the
user to pan through the display, up, down, left and right.	

8

● mouseMotionForGlut() is used to capture mouse motion events for when the user is
not holding down a mouse button. It is registered via the	 glutPassiveMotionFunc()
registration function. This is used to update the coordinates and fractions displayed on
the screen.	

glutMainLoop()
As mentioned before, glutMainLoop(void) must be the very last function to be called when
initializing a window. This begins event processing and the display callback is triggered. Also
other registered callbacks are stored, waiting for events to trigger them. The method that
contains the	 glutMainLoop() will never be called again unless the user calls
glutMainLoopEvent() or glutLeaveMainLoop(), which we do not consider in this module.
For more information on glutMainLoopEvent(), glutLeaveMainLoop(), or about the
glutMainLoop(), see: http://openglut.sourceforge.net/group__mainloop.html

How Our Drawing works
Our drawing consists of quadrilaterals in 3-space, but it is easiest to think about if we start with

the 2-d version. As described in the section Numeric Approach, we compute for
many points forming a square mesh, and then color each square of that mesh according to the
hResults array entry corresponding to the bottom-left side of that square. This color
corresponds roughly to how “rational” the values and are. Finally, we give a height to
each corner of the square corresponding to its value in the hResults array.

In our init function initGlutDisplay() we set our window drawing to be double-buffered, by
calling glutInitDisplayMode(GLUT_DOUBLE	 |	 GLUT_RGB). This means that our drawing code
will take place on a buffer off-screen, and will not replace the contents of the current screen (the
current buffer) until we call glSwapBuffers(). This automatic double-buffering causes motion
and animation to appear much smoother. More on glutSwapBuffers() here
http://www.opengl.org/resources/libraries/glut/spec3/node21.html

Our drawing begins by clearing the buffer, giving us a blank screen on which to draw. The two
for loops run through the 2-d array of points, and the if statement guarantees that a
quadrilateral is drawn only if all four of its corners are sufficiently small, that is, are less than the
global value threshold. Then, if the quad may be drawn, we tell OpenGL that we will be
drawing a quadrilateral (glBegin(GL_QUADS)), specify the vertices by issuing glVertex3f(x,	
y,	 z)	 commands, one for each vertex, in order around the quadrilateral, and then call glEnd()
to finish that quadrilateral. When the loops finish and all quadrilaterals have been drawn, we call
glutSwapBuffers() to put our drawing, now complete, onto the screen.

Printing Text
OpenGL has no native way of displaying text. Fortunately, there are ways around this. In this
module, we created a function called drawString(void*	 font,	 char*	 s,	 float	 x,	 float	
y,	 floatz);	 Glut does come with bitmap fonts; we happen to use Helvetica. For more fonts:
http://pyopengl.sourceforge.net/documentation/manual/glutBitmapCharacter.3GLUT.html

9

The drawString function requires a font, string, x location, y location, and z location. x, y and z
location are all set via the glRasterPos3f(float	 x,	 float	 y,	 float	 z)	 function. This is
followed by a for loop which pushes the value of the wanted string into a
glutBitmapCharacter function. This seems like a lot of effort to draw text, but nothing simpler
presented itself. The general idea came from http://stackoverflow.com/a/10235511/525576.
View Example 2.0 - displaying text

Example 2.0 - displaying text
char	 gMouseXLocation[25];	
void	 displayText(void){	
	 /*	 xMotionLoc	 would	 be	 the	 global	 x	 value	 retrieved	 from	 	
	 	 *	 glutPassiveMotionFunc	 callback.	

	 */	
sprintf(gMouseXlocation,	 “X	 Location:	 %2.20f”,	 xMotionLoc);	
drawString(GLUT_BITMAP_HELVETICA_18,	 gMouseXLocation,	 0,	 100,	 0);	
glutPostRedisplay();	
glutSwapbuffers();	

}	

Concluding Message
At this point with a basic understanding of OpenGL, we hope you have an appreciation of how
easy OpenGL is to work with. OpenGL has over 250 function calls with which to draw complex
scenes. Three great resources to expand your newly learned skills are the OpenGL API
Documentation, NEHE tutorials and The Big Red Book (OpenGL Programming Guide), all free
online.

OpenGL API DOCS: http://www.opengl.org/documentation/
NeHe Tutorials: http://nehe.gamedev.net/
Big Red Book: http://www.glprogramming.com/red/

CUDA Version
The pair of nested loops in the recompute() function is an example of an “embarrassingly
parallelizable” bit of code. The computation done within each iteration is completely independent
of the computation done in other iterations. This means that we may hand the lines of code
below to many different processors, each of which will perform the computation for a single pair
of values (xval,	 aval) and save the result to memory.

double	 originalXval	 =	 xval;
newxval	 =	 xval;	
for(int	 i	 =	 0;	 i	 <	 iterations;	 i++)	 //Iterate	

10

	 	 	 	 newxval	 =	 newxval	 *	 newxval	 +	 aval;	
hResults[ap*stride+xp]	 =	 newxval	 -‐	 originalXval;	
hDenomVals[ap*stride+xp]	 =	 denomVal(fabs(newxval-‐originalXval),	 	

fabs(aval),	 gdepth);	

The architecture of a GPGPU is uniquely well-suited for such embarrassingly-parallelizable bits
of code. For example, the graphics card in my MacBook Pro (GeForce GT 330M) has six
multiprocessors, each of which has eight cores, so that 48 threads may be running at any one
time. Theoretically, then, we could expect a factor of 48 speedup in the running of our
recompute() function. Of course, this is tempered by the need to transfer the computation
and/or data onto the card, and then read the results off of the card. In our case, the speedup
makes it worth it.

Offloading to CUDA
Each time we pan or zoom our display, or change the resolution of our drawing, we must
recompute the values in the hResults and hDenomVals arrays. The bulk of that work is done by
the two for loops, shown in the box below, within the recompute()	 function:

for(xval	 =	 gxmin;	 xval	 <=	 gxmax;	 xval	 +=	 gxstep){
	 	 ap	 =	 0;	
	 	 for(aval	 =	 gamin;	 aval	 <=	 gamax;	 aval	 +=	 gastep){	
	 	 	 	 double	 originalXval	 =	 xval;	
	 	 	 	 newxval	 =	 xval;	
	 	 	 	 for(int	 i	 =	 0;	 i	 <	 iterations;	 i++)	 //Iterate	
	 	 	 	 	 	 newxval	 =	 newxval	 *	 newxval	 +	 aval;	
	
	 	 	 	 hResults[ap*stride+xp]	 =	 newxval	 -‐	 originalXval;	
	 	 	 	 hDenomVals[ap*stride+xp]	 =	 denomVal(fabs(newxval-‐originalXval),	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 fabs(aval),	 gdepth);	
	 	 	 	 ap++;	
	 	 }	
	 	 xp++;	
}	

In the CUDA version, these loops will be replaced by the launch of a kernel that runs on the
GPU, preceded by a bit of setup, and followed by copying the results off of the GPU and onto
the host computer, as shown in the box below:

11

dim3	 dimBlock(BLOCKSIZE,	 BLOCKSIZE);
dim3	 dimGrid((int)ceil((xmax	 -‐	 xmin)/xstep/BLOCKSIZE),	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 (int)ceil((amax	 -‐	 amin)/astep/BLOCKSIZE));	
	
iterate	 <<<	 dimGrid,	 dimBlock	 >>>	 (xmin,	 xmax,	 xstep,	 amin,	 amax,	 astep,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 numIt,	 stride,	 (double*)dResults,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 gdepth,	 (double*)dDenomVals);	
cudaThreadSynchronize();	
	
//	 Copy	 the	 results	 off	 of	 the	 device	 onto	 the	 host	
cudaMemcpy(hResults,	 dResults,	 stride	 *	 acount	 *	 sizeof(double),	
	 	 	 	 	 	 	 	 	 	 	 cudaMemcpyDeviceToHost);	
cudaMemcpy(hDenomVals,	 dDenomVals,	 stride	 *	 acount	 *	 sizeof(double),	
	 	 	 	 	 	 	 	 	 	 	 cudaMemcpyDeviceToHost);	

The first two statements define the size of the thread blocks (16x16 in this case, since
BLOCKSIZE=16 in our code) and the size of the grid, which is set to be large enough that the grid
of blocks covers all of the range we wish to cover. (Blocks and Grids are discussed in the next
section.) The command	 iterate	 <<<...>>>(...) is the kernel call. It passes eleven
parameters to the kernel in the way an ordinary C function would, and it specifies the block and
grid sizes within the triple-angle brackets. This tells CUDA exactly how many threads to create,
and each thread will execute exactly the same code --- the kernel code given in the iterate()
function. As discussed in the Our Kernel section below, threads can “locate” themselves by
making use of several special variables, and determine the correct values of xval and aval to
use in their computation.

Blocks and Grids
One great idea of GPU computing is that, in some sense, we may program as if the graphics
card had an unlimited number of computing nodes. For example, suppose we wish to compute

 for 1024 values of i, say , and the same 1024 values for j. That
is, we wish to perform 1,048,576 computations. Then we may imagine that there are 1,048,576
compute nodes laid out in a 1024x1024 array, and simply ask each node (i, j) to perform its

computation and store its result at the appropriate place in memory.

In reality, though, there are only six multiprocessors on my graphics card, each of which can run
up to eight threads at a time. So CUDA requires that we subdivide our domain into blocks of
threads, each block containing no more than 512 threads. In the code supplied with this module,
squareExplore.c and squareExplore.h, we use a default block of dimensions 16x16,
containing 256 threads.

12

The picture above (taken from the CUDA C Programming Guide, published by NVIDIA) shows a
grid (in green) of blocks. Each block contains some number of threads, and the blocks are
arranged to form a grid covering the entire domain. In our example, we had a grid of threads of
size 1024x1024. To cover this with blocks of size 16x16, we would need a 64x64 grid of blocks.

Once we’ve determined the size of our blocks and the size of our grid, we can launch a kernel
on the CUDA card. (A kernel is a self-contained unit of work that we offload to the GPU. This
kernel runs on the GPU, may read and write to memory on the GPU, and is often surrounded by
writes from host memory to the device memory and/or reads from device memory to host
memory.) To specify the sizes of the blocks and grid we use a CUDA type --- dim3 --- which

13

may contain one, two or three unsigned integers. More precisely, it always contains three
unsigned integers, but the programmer may specify fewer, and the unspecified ones get
initialized to 1. Here are the lines specifying block and grid sizes from squareExplore.c:

dim3	 dimBlock(BLOCKSIZE,	 BLOCKSIZE);
dim3	 dimGrid((int)ceil((gxmax	 -‐	 gxmin)/gxstep/BLOCKSIZE),	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (int)ceil((gamax	 -‐	 gamin)/gastep/BLOCKSIZE));	

The first line declares the variable dimBlock to be of type dim3, and sets its first two coordinates
to BLOCKSIZE. So dimBlock will be the triple: (BLOCKSIZE, BLOCKSIZE, 1). Similarly, dimGrid
will be a triple (gridsize, gridsize, 1) where gridsize = (int)ceil((gxmax -
gxmin)/gxstep/BLOCKSIZE) is computed to be just large enough that the full ranges (gxmin,
gxmax) and (gamin, gamax) get covered.

The next line of the code launches our CUDA kernel. A CUDA kernel is an ordinary function
declared to be a kernel function by virtue of the “__global__” keyword in its declaration. The
NVIDIA nvcc compiler recognizes this keyword and then makes several additional variables
available to the function. The figure below provides a concrete example to help explain these
variables. In this
example, we have a
70x200 grid of threads
that we wish to run, and
we cover it with blocks
of dimensions 16x32.
Since 70 and 200 are
not whole multiples of
16 and 32, the grid will
need to overhang our
area of interest by some
amount.

gridDim The dimensions of the grid. Use gridDim.x, gridDim.y and gridDim.z to access the
dimensions. In the Figure above, gridDim.x = 7, gridDim.y = 5 and gridDim.z = 1.

blockIdx The location of a block within the grid. All 512 threads in the middle block of the grid
would find blockIdx.x = 3, blockIdx.y = 2, blockIdx.z = 0.

blockDim The dimensions of the blocks. All threads in the example would find blockDim.x =
32, blockDim.y = 16 and blockDim.z = 1.

threadIdx This structure gives the location of a thread within its own block. Thus the top-left
thread of each block would find threadIdx.x = threadIdx.y = threadIdx.z = 0, while the
top-right threads would find threadIdx.x = 31, threadIdx.y = 0 and threadIdx.z = 0.

14

Our kernel
Now let’s look at our actual kernel code, shown in the box below:

__global__	 void	 iterate(double	 xmin,	 double	 xmax,	 double	 xstep,	
	 	 	 double	 amin,	 double	 amax,	 double	 astep,	 	
	 	 	 int	 numIt,	 size_t	 stride,	 double*	 dResults,	
	 	 	 int	 depth,	 double*	 dDenomVals){	
	
	 	 int	 xidx	 =	 blockIdx.x	 *	 blockDim.x	 +	 threadIdx.x;	
	 	 int	 aidx	 =	 blockIdx.y	 *	 blockDim.y	 +	 threadIdx.y;	
	
	 	 double	 xval	 =	 xmin	 +	 xidx	 *	 xstep;	
	 	 double	 aval	 =	 amin	 +	 aidx	 *	 astep;	
	
	 	 //	 Make	 sure	 we're	 within	 range	
	 	 if(xval	 >	 xmax	 ||	 aval	 >	 amax)	
	 	 	 	 return;	
	
	 	 //	 Iterate	
	 	 double	 originalXval	 =	 xval;	 	 	 	 	 	 	 	 	 	 	 	 	 //	 save	 for	 later	
	 	 for(int	 i	 =	 0;	 i	 <	 numIt;	 i++)	
	 	 	 	 xval	 =	 xval	 *	 xval	 +	 aval;	 	
	
	 	 //	 compute	 our	 location	 in	 the	 array	
	 	 int	 loc	 =	 aidx	 *	 stride	 +	 xidx;	
	
	 	 dResults[loc]	 =	 xval	 -‐	 originalXval;	
	 	 dDenomVals[loc]	 =	 denomVal(fabs(xval	 -‐	 originalXval),	 fabs(aval),	 depth);	
}	

The __global__ keyword is used to tell the NVIDIA compiler nvcc that this function is a kernel
function, intended to be an entry point for computation on the GPU. (In contrast, the
__device__ keyword tells the compiler that a function will be run on the GPU, to be called by
other GPU kernels or functions, but is not an entry point function.)

As mentioned earlier, every thread will run exactly the same code, so the first thing a thread
typically does is to locate itself within the space of threads that will be launched by the kernel.
The variables xidx and aidx accomplish that. Recall that our computation may be viewed as
computing at points comprising a grid. In this sense, xidx tells how far “across” we are, and
aidx tells how far “up” we are. These values take the place of xp and ap in our non-CUDA code
for recompute().

Next our code uses the values of xidx and aidx to determine what values of xval	 and aval	 it
should use for its computation, and performs the iteration. The loc variable tells where in the
arrays the value of the results should be stored. Each row of our matrix is of width “stride,” so

15

if we want to go to the aidx’th row, we multiply stride by aidx to find the starting point of that
row. Then add “xidx” to find the location of the entry in the xidx’th column.

Finally we store our computations in the arrays. First we store the difference between the
original and iterated value. Recall that this difference will be 0 if the starting value xval is of
period numIt. These arrays reside in the video card’s “global” memory, which we discuss below.

Device and Host Memory
Multiprocessors have a large number of 32-bit registers: 8k for devices of compute capabilities
1.0 and 1.1, 16k for devices of compute capability 1.2 and 1.3, and 32k for devices of compute
capability 2.0 or above. (See Appendix F of [2] for a description of compute capabilities.) Here
we describe the various kinds of memory available on a GPU.

Registers Registers are the fastest memory, accessible without any latency on each clock
cycle, just as on a regular CPU. A thread’s registers cannot be shared with other
threads.

Shared
Memory

Shared memory is comparable to L1 cache memory on a regular CPU. It resides
close to the multiprocessor, and has very short access times. Shared memory is
shared among all the threads of a given block. Section 3.2.2 of the Cuda C Best
Practices Guide [1] has more on shared memory optimization considerations.
Each multiprocessor has on the order of 32k of shared memory.

Global
Memory

Global memory resides on the device, but off-chip from the multi-processors, so
that access times to global memory can be 100 times greater than to shared
memory. Devices typically have between 1 and 6 gigabytes of global memory. All
threads in the kernel have access to all data in global memory.

Local
Memory

Thread-specific memory stored where global memory is stored. Variables are
stored in a thread’s local memory if the compiler decides that there are not enough
registers to hold the thread’s data. This memory is slow, even though it’s called
“local.”

Constant
Memory

64k of Constant memory resides off-chip from the multiprocessors, and is read-
only. The host code writes to the device’s constant memory before launching the
kernel, and the kernel may then read this memory. Constant memory access is
cached — each multiprocessor can cache up to 8k of constant memory, so that
subsequent reads from constant memory can be very fast. All threads have
access to the constant memory.

 Texture
Memory

Specialized memory for surface texture mapping, not discussed in this module.

16

Before launching a CUDA kernel, the host program (the program on the computer, not the
device) may allocate memory on the video card using cudaMalloc(). This function sets a pointer
to the allocated memory, which can be used in three important ways: 1. For use in copying data
from the host computer to the device at that location; 2. To send to the kernel program running
on the device, so that the kernel can read from and/or write to that memory, and 3. For use in
copying data back off of the device. The memory thus allocated resides in the device’s global
memory.

The last two commands in our recompute() code given earlier are shown below:

//	 Copy	 the	 results	 off	 of	 the	 device	 onto	 the	 host
cudaMemcpy(hResults,	 dResults,	 stride	 *	 acount	 *	 sizeof(double),	
	 	 	 	 	 	 	 	 	 	 cudaMemcpyDeviceToHost);	
cudaMemcpy(hDenomVals,	 dDenomVals,	 stride	 *	 acount	 *	 sizeof(double),	
	 	 	 	 	 	 	 	 	 	 cudaMemcpyDeviceToHost);	

Here is an explanation of the parameters in the first copy:

● hResults is a pointer to memory on the host. This is the destination	
● dResults is a pointer to memory on the device. This is the source	
● stride	 *	 acount	 *	 sizeof(double) is the amount of memory, in bytes, that we are

copying	
● cudamemcpyDeviceToHost is an enumerated constant indicating the direction of the

copy.	
When we launched the kernel earlier we had passed the pointer dResults to the kernel, so that
it would know where to place the results of its computations.

Finally, here is how we allocated the memory on the device in the first place, in main(). (Note
that we allocate this memory only once, but then use it over many kernel launches.)

 err = cudaMallocPitch((void**)&dDenomVals, &stride, 1088*sizeof(double),
1088*sizeof(double));

There is a simpler command cudaMalloc, which has only two parameters: pointer and size, and
we could have used it here. But since we intend to use our memory as a two-dimensional array,
we use cudaMallocPitch() instead. When a CUDA kernel is running, if the threads in a block
all make a simultaneous access to global memory then the CUDA runtime can group those
accesses into a single read or write operation to global memory, greatly increasing
performance. Global memory is read in 32-, 64- or 128-byte transactions, where each block
must start at a memory location that is a multiple of its size. (So a 128-byte transaction can start
at 0, 128. 256, etc...). What cudaMallocPitch() does is set a value (stride in our example)
that is a multiple of the optimal block size (32, 64 or 128) so that each row of our array begins at
one of these multiples. See Section 5.3.2.1 of [2] for more on stride and memory alignment.

17

Running the Code

Two Makefiles are included with this module: One in the main directory and one in the
assessment directory. The latter is shown below.

se	 :	 squareExplore.c	 squareExplore.h
	 	 	 	 cp	 squareExplore.c	 squareExplore.cu	
	 	 	 	 /usr/local/cuda/bin/nvcc	 -‐arch=sm_20	 -‐o	 se	 -‐lglut	 -‐lGL	 -‐lGLU	 \\	
	 	 	 	 	 	 	 -‐lXext	 -‐lXmu	 -‐lX11	 -‐lm	 	 squareExplore.cu	
	
seNoCuda	 :	 squareExploreNoCuda.c	 squareExploreNoCuda.h	
	 	 	 	 g++	 -‐o	 seNoCuda	 -‐lglut	 -‐lGL	 -‐lGLU	 -‐lXext	 -‐lXmu	 -‐lX11	 \\	
	 	 	 	 	 	 	 -‐lm	 	 squareExploreNoCuda.c	
	
	

To build the version that uses CUDA, type “make	 se” at a command line. To build the one that
does not use CUDA, type “make	 seNoCuda”. These create executables “se” and “seNoCuda”
respectively, which can be run by typing “./se” and “./seNoCuda” respectively. Note that
several libraries related to OpenGL and CUDA need to be installed, and these will be specific to
your system.

Also note the “-‐arch=sm_20” flag. This tells the compiler that the code should be targeted for a
CUDA device of compute capability 2.0 or higher. You may need to change the “20” to 11, 12 or
13 if you are running on a device of compute capabiltiy 1.1, 1.2 or 1.3, respectively.

IMPORTANT NOTE: Many text editors facilitate writing C code by automatically indenting
code and highlighting the code by context, and does so by recognizing the “.c” extension of the
file. Most of these editors do not recognize the “.cu” extension. I’ve therefore been writing the
code as “.c” files, and then having the Makefile copy them to “.cu” files before compilation.
This is because the nvcc compiler requires the “.cu” extension. There are other ways to deal
with this discrepancy... Pick your own. But be aware that this is the workflow that the included
Makefiles expect.

18

Timing for CUDA vs. non-CUDA versions

The chart below gives a comparison of the number of frames per second that can be rendered
with and without making use of CUDA. For our tests we used an NVIDIA Telsa C2075 with 448
CUDA cores, and an AMD CPU running at 3.6 GHz. The “i=…” numbers refer to the number of
iterations of the “square and add” operation that were performed when computing each grid
element.

Frames per Second s=0 s=1 s=2 s=3
Tesla i=1 80 37 12 7.7
Tesla i=3 89 45 15.2 9.8
Tesla i=7 108 58 20.2 13.6
Tesla i=15 115 59 23 15.5
CPU only i=1 40 13.7 3.5 2
CPU only i=3 40 13.6 3.6 2.1
CPU only i=7 32 11.7 3 1.8
CPU only i=15 33 10.1 2.6 1.5

Interesting Observation: The frame-rates shown in the table above are higher in all cases
when we make use of CUDA. Notice that the frame rate increases when we make use of the
GPU, as we increase the number of iterations. This is because with more iterations, fewer
quads fall below the threshold for rendering to the screen, so the image may be drawn more
quickly by OpenGL. But in the CPU-only case, more iterations leads to a lower frame rate, even
though exactly the same number of quads will be drawn. This is because more iterations means
more computation for each quad --- exactly where massive parallelism helps.

19

Explorations

The following exercises are designed to give the student an opportunity to practice with the
ideas presented in this module. Solutions to all the problems are included with the module, in an
appropriately-named pair of files.

1. Scenes can be viewed in different ways. Currently our Scene is with a Model View.
Render the scene as a wireframe view. Refer to the glBegin() parameters. Explain why it
visually looks like it does, instead of one big outlined wire.

2. Create a keyboard shortcut that switches between original rendering and wireframe
rendering. The rendering state should stay constant even if other callbacks are triggered.

3. Currently the application only Rotates in ‘x’ (g/G key) and ‘a’ (f/F key) direction.
Implement a 3rd key ‘h’ and ‘H’ to rotate in the ‘z’ direction.‘x’ and ‘a’ both rotate in the
center of the screen, please follow the same rule with the ‘z’ direction. Refer to
glTranslatef() and glRotatef() for help.

4. Rotation via keys f/F, g/G and h/H are fine, but using the mouse for rotation would be
even better. With the same idea as the above keys, write a new function callback that
registers to glutMouseFunc(), glutPassiveMotionFunc() and/or glutMotionFunc().
Creating rotation for ‘x’ and ‘a’ is enough. For assistance on these callbacks, view the
Registering Callbacks section from the OpenGL introduction PDF.

5. Write a version that will graph general functions instead of our iterated quadratic. For
example, how would you change the kernel so that it graphs 10*sin(xy) instead?

Bibliography

[1] The NVIDIA Corporation. The CUDA C Best Practices Guide v4.0. NVIDIA Corporation,
2011.
[2] The NVIDIA Corporation. The CUDA C Programming Guide v4.0. NVIDIA Corporation,
2011.

