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Module Overview 
  
The goal of this module is to teach one pathway for offloading parts of a scientific computation 
onto a CUDA-enabled GPU, and for using OpenGL to visualize the results of that computation. 
To keep the focus on CUDA and OpenGL, we select a purely number-theoretic scientific 
problem with a relatively simple associated computation. 
  
The scientific question: 
We’ll be looking at the function  and investigating what happens when, for 
various values of a, we iterate this function. That is, we are interested in what happens when we 
start with some value x and look at the sequence of numbers: 

. Although we are interested in this as a purely mathematical 
question, exploration of such quadratic iterations has several scientific applications, including 
chaos theory. 
  
When a = −1, the function  has a point of period 2, that is, a value x such that 
f(f(x)) = x. Observe that our sequence:   starting with x = −1 
goes:  −1, 0, −1, 0, . . ., a repeating sequence with period 2. The same function has a point of 

period 1, also called a fixed point, namely , the so-called golden ratio, For this value, 
. For this module, however, we will not be interested in values of x or a that are not 

rational, that is, are not ratios of whole numbers. So this fixed point does not really interest us. 
You can quickly verify that the function  has no rational fixed points by solving the 
equation  and seeing that both its roots (one of which is the golden ratio) are 
irrational. 
  
Quick Question: Find a rational value of a so that the function  does have a 
rational point of period 1.  [some answers include {a=2, x=2} and {a=−15/4, x=5/2}.] 
  

Our question is this: Does there exist a rational number a such that the function  
has a rational point of period 7? At the time of writing, the answer is unknown. See 
[http://people.maths.ox.ac.uk/flynn/arts/art11.pdf] for a very interesting mathematical treatment 
of this question. 
 
Numeric Approach 

Our approach in this module will be to consider the quantity  (where  means 
the nth iteration of the function ), which is zero whenever x is a point of period n. Each 
value of a gives rise to a function  , and each value of x is a potential starting 
point for an iteration. So for each n we may define the two-variable function  to be the 

value of , where x is the starting point and . We then search 
numerically for a fixed point of period n by searching for a suitable rational a and x having 

 = 0.  Given some range of a values:  and range of x values: 
 we subdivide each range into values 
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 and  and 
plot the function  for each pair of values in this interval. 
 
We may think of the domain of our computation as a grid, as shown in the picture below. 

 
 
We plot in two ways: First, we produce a “height” which corresponds to , so that 
when this value is 0, we know that x is a point of period n. We also produce a color  
which corresponds (in a loose way) to how close  is to a rational number. This is a bit 
silly, since every real number is arbitrarily close to a rational number. But we want to measure 
how close it is to a rational number with a small denominator. We use an algorithm based on 
continued fractions in the denomVal() function. It’s very heuristic, and we don’t describe it 
here. The reader is invited to experiment with, and suggest to the authors, better versions of the 
denomVal() function. 
 

For each pair  we compute the value and plot a quadrilateral in 3-

dimensional space with coordinates { ,  ,  

,  } in the color . Plotted 
together these form a surface in 3-space. To make things a bit easier to see, we also make use 
of a threshold  so that we plot a quadrilateral only if all four of its corners’ associated  
values are less than that threshold. A sample screenshot is shown below. The left one, at low 
resolution, shows the individual quadrilaterals. The one on the right is of higher resolution, and 
the quadrilaterals can no longer be distinguished very easily. 
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First Approach --- Single CPU 
 
Our first implementation will use a single CPU, and does not use CUDA. We have two global 

arrays: hResults holding the values of , and hDenomVals, holding values related 
to the denominators of the fractions, that we use to assign the colors.  (Here, “h” stands for 
“host,” in contrast to the “device.” When we use CUDA we will have “dResults” for the array 
residing on the CUDA card, the “device,” as well as “hResults” for its copy on the host 
computer. 
 
In the recompute() function below, the parameters xmin and xmax define the range for x, 

and xstep is the size of the step from one value of x to the next, that is, . 
Same thing for amin, amax and astep. numIt is the number of iterations that the function 
should perform. This is “n” in the discussion above. We store hResults and hDenomVals in one-
dimensional arrays, but we think of them as two-dimensional arrays. The variable stride gives 
the width of the 2-d arrays holding the values, so that the (i, j) entry is at location 
(i*stride+j) in the arrays. Global variables acount and xcount give the number of steps in 
each direction, so that we compute acount*xcount many entries altogether. 
 

The recompute() function does all of the work of computing the values of . It calls 
the denomVal() function to get information about the “rationalness” of the numbers, used for 
coloring. 
 
void recompute(double xmin, double xmax, double xstep, 
               double amin, double amax, double astep,  
               int numIt, size_t stride){ 
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  // How many entries do we need? Set these global values. 
  xcount = (size_t)ceil( (xmax - xmin)/xstep ); 
  acount = (size_t)ceil( (amax - amin)/astep ); 
   
  double newxval, xval, aval; 
  int xp = 0, ap = 0; 
  for(xval = gxmin; xval <= gxmax; xval += gxstep){ 
    ap = 0; 
    for(aval = gamin; aval <= gamax; aval += gastep){ 
      double originalXval = xval; 
      newxval = xval; 
       
      // Perform the iteration 
      for(int i = 0; i < iterations; i++) //Iterate 
        newxval = newxval * newxval + aval; 
       
      // Fill the d_n(x, a) and color arrays. 
      hResults[ap*stride+xp] = newxval - originalXval; 
      hDenomVals[ap*stride+xp] =  
         denomVal(fabs(newxval-originalXval), fabs(aval), gdepth); 
      ap++; 
    } 
    xp++; 
  } 
} 

 
Once these two arrays have been filled with numbers, we render them to the screen using 
OpenGL, as described in the next section. 
 
 

Drawing with OpenGL 
 
Introduction to OpenGL 
OpenGL (Open Graphics Library) is a hardware independent, cross-platform, cross-language 
API for developing graphical interfaces. It takes simple points, lines and polygons and gives the 
programmer the ability to create outstanding projects. 
 
Our model uses GLUT for the simplest way of handling window display, and for Mouse and 
Keyboard callbacks. To use GLUT for managing tasks, you should include it in your header file: 
	  
#include	  <GL/glut.h>	  

	  
Displaying a Window 
To display a window, five necessary initial functions are required.  

● glutInit(&argc,	  argv) should be called before any other GLUT function. This 
initializes the GLUT library.	  
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● glutInitDisplayMode(mode)	  which is used to determine color display and buffer 
mode to be used. More information on modes here: 
http://www.opengl.org/documentation/specs/glut/spec3/node12.html	  

● glutInitWindowSize	  (int	  x,	  int	  y) specifies the size for the application.	  
● glutInitWindowPosition	  (int	  x,	  int	  y) specifies the location on screen for the 

upper-left corner of the window	  
● glutCreateWindow(char*	  string)	  creates the window, but requires 

glutMainLoop()	  for actual display. The string will create the window’s label.	  
 
The above required functions should be called in an init() function. Our module’s init function 
is	  initGlutDisplay(argc,	  argv). In the same init function, glutMainLoop() should be 
called as the last routine; this ties everything together and runs the main loop. Example 1.0, 
shown below, is a complete, self-contained OpenGL program that draws a red square inside a 
square window 300 pixels on a side. 
 

Example 1.0: Hello World 
#include	  <GL/gl.h>	  
#include	  <GL/glut.h>	  
	  
void	  displayForGlut(void){	  
	  	  //clears	  the	  pixels	  
	  	  glClear(GL_COLOR_BUFFER_BIT);	  
	  	  glColor3f(1.0,	  0.0,	  0.0);	  
	  	  glBegin(GL_QUADS);	  
	  	  glVertex3f(0.10,	  0.10,	  0.0);	  
	  	  glVertex3f(0.9,	  0.10,	  0.0);	  
	  	  glVertex3f(0.9,	  0.9,	  0.0);	  
	  	  glVertex3f(0.10,	  0.9,	  0.0);	  
	  	  glEnd();	  
	  	  glFlush();	  
}	  
	  
int	  initGlutDisplay(int	  argc,	  char*	  argv[]){	  
	  	  glutInit(&argc,	  argv);	  
	  	  glutInitDisplayMode(GLUT_RGB);	  
	  	  glutInitWindowSize(300,	  300);	  
	  	  glutInitWindowPosition(100,	  100);	  
	  	  glutCreateWindow("Example	  1.0:	  Hello	  World!");	  
	  	  glMatrixMode(GL_PROJECTION);	  
	  	  glLoadIdentity();	  
	  	  glOrtho(0.0,	  1.0,	  0.0,	  1.0,	  -‐1.0,	  1.0);	  
	  	  glutDisplayFunc(displayForGlut);	  
	  	  glutMainLoop();	  
	  	  return	  0;	  
}	  
	  
int	  main(int	  argc,	  char*	  argv[]){	  
	  	  initGlutDisplay(argc,	  argv);	  
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}	  

 
Callbacks 
GLUT uses a great system of callbacks for both drawing its display and reacting to user input. In 
Example 1.0, the display is drawn in the displayForGlut() function. This function is called 
whenever OpenGL needs to redraw its window. The way we tell OpenGL to use this function 
whenever it wants to redraw the window is by registering displayForGlut() as a callback 
function. The line glutDisplayFunc(displayForGlut) within the initGlutDisplay() function 
accomplishes this. It tells OpenGL that whenever this window needs to redraw itself, execute 
the displayForGlut() function. In other parts of the code we may use the OpenGL command 
glutPostRedisplay() to ask OpenGL to redraw the window. 
 
In general, we register our callback functions when we first initialize a window, and then these 
callbacks run whenever the appropriate event requires them. In the provided code file 
squareExplore.c we register all callbacks in our initGlutDisplay()	  function. In example 
1.0, we used the glutDisplayFunc() callback to get to our display method. Keyboard, mouse, 
and mouse motion all have their own callback functions: 

● glutKeyboardFunc() registers the callback for ordinary keyboard input.	  
● glutSpecialFunc() registers the callback for special keyboard input such as function 

keys and arrow keys.	  
● glutMouseFunc()	  registers the function that responds to mouse clicks.	  
● glutMotionFunc()	  registers the function that responds to mouse “drags.”	  
● glutPassiveMotionFunc() registers the function that responds to mouse motions in 

the window when a button is not depressed.	  
We use three of these callbacks in squareExplore.c, but all five of them among the original 
code, the exercises and the solutions to the exercises. For more information about callbacks 
and OpenGL, see the online reference: 
http://www.opengl.org/documentation/specs/glut/spec3/node45.html. 
 
Our Callbacks 
Our model uses several callback functions for an enriched user experience: 

● displayForGlut() callback function is registered to OpenGL by the 
glutDisplayFunc() registration function. We use displayForGlut() for most of our 
display, including the graphing iterations and handling text.	  

● kbdForGlut()	  callback function is registered to OpenGL by the glutKeyboardFunc()	  
registration	  function. We use this callback for non-special keys such as a-z and A-
Z. Certain keys in our model provide a visual change in the display. As explained before, 
glutPostRedisplay() is called at the end of this method for redisplay.	  

● arrowsForGlut()	  callback function is registered to OpenGL by the 
glutSpecialFunc()	  registration function. Glut organizes special keys such as the 
arrow keys and ctrl key in this callback. We use it for the arrow keys, which allow the 
user to pan through the display, up, down, left and right.	  
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● mouseMotionForGlut() is used to capture mouse motion events for when the user is 
not holding down a mouse button. It is registered via the	  glutPassiveMotionFunc() 
registration function. This is used to update the coordinates and fractions displayed on 
the screen.	  

 
glutMainLoop() 
As mentioned before, glutMainLoop(void) must be the very last function to be called when 
initializing a window. This begins event processing and the display callback is triggered. Also 
other registered callbacks are stored, waiting for events to trigger them. The method that 
contains the	  glutMainLoop() will never be called again unless the user calls 
glutMainLoopEvent() or glutLeaveMainLoop(), which we do not consider in this module.  
For more information on glutMainLoopEvent(), glutLeaveMainLoop(), or about the 
glutMainLoop(), see: http://openglut.sourceforge.net/group__mainloop.html 

 
How Our Drawing works 
Our drawing consists of quadrilaterals in 3-space, but it is easiest to think about if we start with 

the 2-d version. As described in the section Numeric Approach, we compute  for 
many points forming a square mesh, and then color each square of that mesh according to the 
hResults array entry corresponding to the bottom-left side of that square. This color 
corresponds roughly to how “rational” the values  and  are. Finally, we give a height to 
each corner of the square corresponding to its value in the hResults array. 
 
In our init function initGlutDisplay() we set our window drawing to be double-buffered, by 
calling glutInitDisplayMode(GLUT_DOUBLE	  |	  GLUT_RGB). This means that our drawing code 
will take place on a buffer off-screen, and will not replace the contents of the current screen (the 
current buffer) until we call glSwapBuffers(). This automatic double-buffering causes motion 
and animation to appear much smoother. More on glutSwapBuffers() here 
http://www.opengl.org/resources/libraries/glut/spec3/node21.html 
 
Our drawing begins by clearing the buffer, giving us a blank screen on which to draw. The two 
for loops run through the 2-d array of points, and the if statement guarantees that a 
quadrilateral is drawn only if all four of its corners are sufficiently small, that is, are less than the 
global value threshold. Then, if the quad may be drawn, we tell OpenGL that we will be 
drawing a quadrilateral (glBegin(GL_QUADS) ), specify the vertices by issuing glVertex3f(x,	  
y,	  z)	  commands, one for each vertex, in order around the quadrilateral, and then call glEnd() 
to finish that quadrilateral. When the loops finish and all quadrilaterals have been drawn, we call 
glutSwapBuffers() to put our drawing, now complete, onto the screen. 
 
Printing Text 
OpenGL has no native way of displaying text. Fortunately, there are ways around this. In this 
module, we created a function called drawString(void*	  font,	  char*	  s,	  float	  x,	  float	  
y,	  floatz);	  Glut does come with bitmap fonts; we happen to use Helvetica. For more fonts: 
http://pyopengl.sourceforge.net/documentation/manual/glutBitmapCharacter.3GLUT.html 
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The drawString function requires a font, string, x location, y location, and z location. x, y and z 
location are all set via the glRasterPos3f(float	  x,	  float	  y,	  float	  z)	  function. This is 
followed by a for loop which pushes the value of the wanted string into a 
glutBitmapCharacter function. This seems like a lot of effort to draw text, but nothing simpler 
presented itself. The general idea came from http://stackoverflow.com/a/10235511/525576. 
View Example 2.0 - displaying text 
 
 

Example 2.0 - displaying text 
char	  gMouseXLocation[25];	  
void	  displayText(void){	  
	   /*	  xMotionLoc	  would	  be	  the	  global	  x	  value	  retrieved	  from	  	  
	   	  *	  glutPassiveMotionFunc	  callback.	  

	  */	  
sprintf(gMouseXlocation,	  “X	  Location:	  %2.20f”,	  xMotionLoc);	  
drawString(GLUT_BITMAP_HELVETICA_18,	  gMouseXLocation,	  0,	  100,	  0);	  
glutPostRedisplay();	  
glutSwapbuffers();	  

}	  

 
Concluding Message 
At this point with a basic understanding of OpenGL, we hope you have an appreciation of how 
easy OpenGL is to work with. OpenGL has over 250 function calls with which to draw complex 
scenes. Three great resources to expand your newly learned skills are the OpenGL API 
Documentation, NEHE tutorials and The Big Red Book (OpenGL Programming Guide), all free 
online. 
 
OpenGL API DOCS: http://www.opengl.org/documentation/ 
NeHe Tutorials: http://nehe.gamedev.net/ 
Big Red Book: http://www.glprogramming.com/red/ 
 
 

CUDA Version 
The pair of nested loops in the recompute() function is an example of an “embarrassingly 
parallelizable” bit of code. The computation done within each iteration is completely independent 
of the computation done in other iterations. This means that we may hand the lines of code 
below to many different processors, each of which will perform the computation for a single pair 
of values (xval,	  aval) and save the result to memory. 
 

double	  originalXval	  =	  xval; 
newxval	  =	  xval;	  
for(int	  i	  =	  0;	  i	  <	  iterations;	  i++)	  //Iterate	  
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	  	  	  	  newxval	  =	  newxval	  *	  newxval	  +	  aval;	  
hResults[ap*stride+xp]	  =	  newxval	  -‐	  originalXval;	  
hDenomVals[ap*stride+xp]	  =	  denomVal(fabs(newxval-‐originalXval),	  	  

fabs(aval),	  gdepth);	  

 
The architecture of a GPGPU is uniquely well-suited for such embarrassingly-parallelizable bits 
of code. For example, the graphics card in my MacBook Pro (GeForce GT 330M) has six 
multiprocessors, each of which has eight cores, so that 48 threads may be running at any one 
time. Theoretically, then, we could expect a factor of 48 speedup in the running of our 
recompute() function. Of course, this is tempered by the need to transfer the computation 
and/or data onto the card, and then read the results off of the card. In our case, the speedup 
makes it worth it. 
 
Offloading to CUDA 
Each time we pan or zoom our display, or change the resolution of our drawing, we must 
recompute the values in the hResults and hDenomVals arrays. The bulk of that work is done by 
the two for loops, shown in the box below, within the recompute()	  function: 
 

for(xval	  =	  gxmin;	  xval	  <=	  gxmax;	  xval	  +=	  gxstep){ 
	  	  ap	  =	  0;	  
	  	  for(aval	  =	  gamin;	  aval	  <=	  gamax;	  aval	  +=	  gastep){	  
	  	  	  	  double	  originalXval	  =	  xval;	  
	  	  	  	  newxval	  =	  xval;	  
	  	  	  	  for(int	  i	  =	  0;	  i	  <	  iterations;	  i++)	  //Iterate	  
	  	  	  	  	  	  newxval	  =	  newxval	  *	  newxval	  +	  aval;	  
	  
	  	  	  	  hResults[ap*stride+xp]	  =	  newxval	  -‐	  originalXval;	  
	  	  	  	  hDenomVals[ap*stride+xp]	  =	  denomVal(fabs(newxval-‐originalXval),	  
	  	  	  	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  fabs(aval),	  gdepth);	  
	  	  	  	  ap++;	  
	  	  }	  
	  	  xp++;	  
}	  

 
In the CUDA version, these loops will be replaced by the launch of a kernel that runs on the 
GPU, preceded by a bit of setup, and followed by copying the results off of the GPU and onto 
the host computer, as shown in the box below: 
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dim3	  dimBlock(BLOCKSIZE,	  BLOCKSIZE); 
dim3	  dimGrid((int)ceil((xmax	  -‐	  xmin)/xstep/BLOCKSIZE),	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  (int)ceil((amax	  -‐	  amin)/astep/BLOCKSIZE));	  
	  
iterate	  <<<	  dimGrid,	  dimBlock	  >>>	  (xmin,	  xmax,	  xstep,	  amin,	  amax,	  astep,	  
	  	  	  	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  numIt,	  stride,	  (double*)dResults,	  
	  	  	  	   	   	   	  	  	   	  	  	  	  	  	  	  	  	  	  	  gdepth,	  (double*)dDenomVals);	  
cudaThreadSynchronize();	  
	  
//	  Copy	  the	  results	  off	  of	  the	  device	  onto	  the	  host	  
cudaMemcpy(hResults,	  dResults,	  stride	  *	  acount	  *	  sizeof(double),	  
	  	  	  	  	  	  	  	  	  	  	  cudaMemcpyDeviceToHost);	  
cudaMemcpy(hDenomVals,	  dDenomVals,	  stride	  *	  acount	  *	  sizeof(double),	  
	  	  	  	  	  	  	  	  	  	  	  cudaMemcpyDeviceToHost);	  

 
The first two statements define the size of the thread blocks (16x16 in this case, since 
BLOCKSIZE=16 in our code) and the size of the grid, which is set to be large enough that the grid 
of blocks covers all of the range we wish to cover. (Blocks and Grids are discussed in the next 
section.) The command	  iterate	  <<<...>>>(...) is the kernel call. It passes eleven 
parameters to the kernel in the way an ordinary C function would, and it specifies the block and 
grid sizes within the triple-angle brackets. This tells CUDA exactly how many threads to create, 
and each thread will execute exactly the same code --- the kernel code given in the iterate() 
function. As discussed in the Our Kernel section below, threads can “locate” themselves by 
making use of several special variables, and determine the correct values of xval and aval to 
use in their computation. 
 
Blocks and Grids 
One great idea of GPU computing is that, in some sense, we may program as if the graphics 
card had an unlimited number of computing nodes. For example, suppose we wish to compute 

 for 1024 values of i, say , and the same 1024 values for j. That 
is, we wish to perform 1,048,576 computations. Then we may imagine that there are 1,048,576 
compute nodes laid out in a 1024x1024 array, and simply ask each node (i, j) to perform its 

computation and store its result  at the appropriate place in memory. 
 
In reality, though, there are only six multiprocessors on my graphics card, each of which can run 
up to eight threads at a time. So CUDA requires that we subdivide our domain into blocks of 
threads, each block containing no more than 512 threads. In the code supplied with this module, 
squareExplore.c and squareExplore.h, we use a default block of dimensions 16x16, 
containing 256 threads. 
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The picture above (taken from the CUDA C Programming Guide, published by NVIDIA) shows a 
grid (in green) of blocks. Each block contains some number of threads, and the blocks are 
arranged to form a grid covering the entire domain. In our example, we had a grid of threads of 
size 1024x1024. To cover this with blocks of size 16x16, we would need a 64x64 grid of blocks. 
 
Once we’ve determined the size of our blocks and the size of our grid, we can launch a kernel 
on the CUDA card. (A kernel is a self-contained unit of work that we offload to the GPU. This 
kernel runs on the GPU, may read and write to memory on the GPU, and is often surrounded by 
writes from host memory to the device memory and/or reads from device memory to host 
memory.) To specify the sizes of the blocks and grid we use a CUDA type --- dim3 --- which 
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may contain one, two or three unsigned integers. More precisely, it always contains three 
unsigned integers, but the programmer may specify fewer, and the unspecified ones get 
initialized to 1. Here are the lines specifying block and grid sizes from squareExplore.c: 
 

dim3	  dimBlock(BLOCKSIZE,	  BLOCKSIZE); 
dim3	  dimGrid((int)ceil((gxmax	  -‐	  gxmin)/gxstep/BLOCKSIZE),	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (int)ceil((gamax	  -‐	  gamin)/gastep/BLOCKSIZE));	  

 
The first line declares the variable dimBlock to be of type dim3, and sets its first two coordinates 
to BLOCKSIZE. So dimBlock will be the triple: (BLOCKSIZE, BLOCKSIZE, 1). Similarly, dimGrid 
will be a triple (gridsize, gridsize, 1) where gridsize = (int)ceil((gxmax - 
gxmin)/gxstep/BLOCKSIZE) is computed to be just large enough that the full ranges (gxmin, 
gxmax) and (gamin, gamax) get covered. 
 
The next line of the code launches our CUDA kernel. A CUDA kernel is an ordinary function 
declared to be a kernel function by virtue of the “__global__” keyword in its declaration. The 
NVIDIA nvcc compiler recognizes this keyword and then makes several additional variables 
available to the function. The figure below provides a concrete example to help explain these 
variables. In this 
example, we have a 
70x200 grid of threads 
that we wish to run, and 
we cover it with blocks 
of dimensions 16x32. 
Since 70 and 200 are 
not whole multiples of 
16 and 32, the grid will 
need to overhang our 
area of interest by some 
amount. 

 

gridDim The dimensions of the grid. Use gridDim.x, gridDim.y and gridDim.z to access the 
dimensions. In the Figure above, gridDim.x = 7, gridDim.y = 5 and gridDim.z = 1. 

blockIdx The location of a block within the grid. All 512 threads in the middle block of the grid 
would find blockIdx.x = 3, blockIdx.y = 2, blockIdx.z = 0. 

blockDim The dimensions of the blocks. All threads in the example would find blockDim.x = 
32, blockDim.y = 16 and blockDim.z = 1. 

threadIdx This structure gives the location of a thread within its own block. Thus the top-left 
thread of each block would find threadIdx.x = threadIdx.y = threadIdx.z = 0, while the 
top-right threads would find threadIdx.x = 31, threadIdx.y = 0 and threadIdx.z = 0. 
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Our kernel 
Now let’s look at our actual kernel code, shown in the box below: 
 

__global__	  void	  iterate(double	  xmin,	  double	  xmax,	  double	  xstep,	   
	   	   	   double	  amin,	  double	  amax,	  double	  astep,	  	  
	   	   	   int	  numIt,	  size_t	  stride,	  double*	  dResults,	  
	   	   	   int	  depth,	  double*	  dDenomVals){	  
	  
	  	  int	  xidx	  =	  blockIdx.x	  *	  blockDim.x	  +	  threadIdx.x;	  
	  	  int	  aidx	  =	  blockIdx.y	  *	  blockDim.y	  +	  threadIdx.y;	  
	  
	  	  double	  xval	  =	  xmin	  +	  xidx	  *	  xstep;	  
	  	  double	  aval	  =	  amin	  +	  aidx	  *	  astep;	  
	  
	  	  //	  Make	  sure	  we're	  within	  range	  
	  	  if(xval	  >	  xmax	  ||	  aval	  >	  amax)	  
	  	  	  	  return;	  
	  
	  	  //	  Iterate	  
	  	  double	  originalXval	  =	  xval;	  	  	  	  	  	  	  	  	  	  	  	  	  //	  save	  for	  later	  
	  	  for(int	  i	  =	  0;	  i	  <	  numIt;	  i++)	  
	  	  	  	  xval	  =	  xval	  *	  xval	  +	  aval;	  	  
	  
	  	  //	  compute	  our	  location	  in	  the	  array	  
	  	  int	  loc	  =	  aidx	  *	  stride	  +	  xidx;	  
	  
	  	  dResults[loc]	  =	  xval	  -‐	  originalXval;	  
	  	  dDenomVals[loc]	  =	  denomVal(fabs(xval	  -‐	  originalXval),	  fabs(aval),	  depth);	  
}	  

 
The __global__ keyword is used to tell the NVIDIA compiler nvcc that this function is a kernel 
function, intended to be an entry point for computation on the GPU. (In contrast, the 
__device__ keyword tells the compiler that a function will be run on the GPU, to be called by 
other GPU kernels or functions, but is not an entry point function.) 
 
As mentioned earlier, every thread will run exactly the same code, so the first thing a thread 
typically does is to locate itself within the space of threads that will be launched by the kernel. 
The variables xidx and aidx accomplish that. Recall that our computation may be viewed as 
computing at points comprising a grid. In this sense, xidx tells how far “across” we are, and 
aidx tells how far “up” we are. These values take the place of xp and ap in our non-CUDA code 
for recompute(). 
 
Next our code uses the values of xidx and aidx to determine what values of xval	  and aval	  it 
should use for its computation, and performs the iteration. The loc variable tells where in the 
arrays the value of the results should be stored. Each row of our matrix is of width “stride,” so 
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if we want to go to the aidx’th row, we multiply stride by aidx to find the starting point of that 
row. Then add “xidx” to find the location of the entry in the xidx’th column. 
 
Finally we store our computations in the arrays. First we store the difference between the 
original and iterated value. Recall that this difference will be 0 if the starting value xval is of 
period numIt. These arrays reside in the video card’s “global” memory, which we discuss below. 
 
Device and Host Memory 
Multiprocessors have a large number of 32-bit registers: 8k for devices of compute capabilities 
1.0 and 1.1, 16k for devices of compute capability 1.2 and 1.3, and 32k for devices of compute 
capability 2.0 or above. (See Appendix F of [2] for a description of compute capabilities.) Here 
we describe the various kinds of memory available on a GPU. 
 

Registers Registers are the fastest memory, accessible without any latency on each clock 
cycle, just as on a regular CPU. A thread’s registers cannot be shared with other 
threads. 

Shared 
Memory 
 

Shared memory is comparable to L1 cache memory on a regular CPU. It resides 
close to the multiprocessor, and has very short access times. Shared memory is 
shared among all the threads of a given block. Section 3.2.2 of the Cuda C Best 
Practices Guide [1] has more on shared memory optimization considerations. 
Each multiprocessor has on the order of 32k of shared memory. 

Global 
Memory 
 

Global memory resides on the device, but off-chip from the multi-processors, so 
that access times to global memory can be 100 times greater than to shared 
memory. Devices typically have between 1 and 6 gigabytes of global memory. All 
threads in the kernel have access to all data in global memory. 

Local 
Memory 
 

Thread-specific memory stored where global memory is stored. Variables are 
stored in a thread’s local memory if the compiler decides that there are not enough 
registers to hold the thread’s data. This memory is slow, even though it’s called 
“local.” 

Constant 
Memory 

64k of Constant memory resides off-chip from the multiprocessors, and is read-
only. The host code writes to the device’s constant memory before launching the 
kernel, and the kernel may then read this memory. Constant memory access is 
cached — each multiprocessor can cache up to 8k of constant memory, so that 
subsequent reads from constant memory can be very fast. All threads have 
access to the constant memory. 

 Texture 
Memory 

Specialized memory for surface texture mapping, not discussed in this module. 
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Before launching a CUDA kernel, the host program (the program on the computer, not the 
device) may allocate memory on the video card using cudaMalloc(). This function sets a pointer 
to the allocated memory, which can be used in three important ways: 1. For use in copying data 
from the host computer to the device at that location; 2. To send to the kernel program running 
on the device, so that the kernel can read from and/or write to that memory, and 3. For use in 
copying data back off of the device. The memory thus allocated resides in the device’s global 
memory. 
 
The last two commands in our recompute() code given earlier are shown below: 
 

//	  Copy	  the	  results	  off	  of	  the	  device	  onto	  the	  host 
cudaMemcpy(hResults,	  dResults,	  stride	  *	  acount	  *	  sizeof(double),	  
	  	  	  	  	  	  	  	  	  	  cudaMemcpyDeviceToHost);	  
cudaMemcpy(hDenomVals,	  dDenomVals,	  stride	  *	  acount	  *	  sizeof(double),	  
	  	  	  	  	  	  	  	  	  	  cudaMemcpyDeviceToHost);	  

 
Here is an explanation of the parameters in the first copy: 

● hResults is a pointer to memory on the host. This is the destination	  
● dResults is a pointer to memory on the device. This is the source	  
● stride	  *	  acount	  *	  sizeof(double) is the amount of memory, in bytes, that we are 

copying	  
● cudamemcpyDeviceToHost is an enumerated constant indicating the direction of the 

copy.	  
When we launched the kernel earlier we had passed the pointer dResults to the kernel, so that 
it would know where to place the results of its computations.  
 
Finally, here is how we allocated the memory on the device in the first place, in main(). (Note 
that we allocate this memory only once, but then use it over many kernel launches.) 
 

 err =  cudaMallocPitch((void**)&dDenomVals, &stride, 1088*sizeof(double),  
1088*sizeof(double)); 

 
There is a simpler command cudaMalloc, which has only two parameters: pointer and size, and 
we could have used it here. But since we intend to use our memory as a two-dimensional array, 
we use cudaMallocPitch() instead. When a CUDA kernel is running, if the threads in a block 
all make a simultaneous access to global memory then the CUDA runtime can group those 
accesses into a single read or write operation to global memory, greatly increasing 
performance. Global memory is read in 32-, 64- or 128-byte transactions, where each block 
must start at a memory location that is a multiple of its size. (So a 128-byte transaction can start 
at 0, 128. 256, etc...). What cudaMallocPitch() does is set a value (stride in our example) 
that is a multiple of the optimal block size (32, 64 or 128) so that each row of our array begins at 
one of these multiples. See Section 5.3.2.1 of [2] for more on stride and memory alignment. 
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Running the Code 
 
Two Makefiles are included with this module: One in the main directory and one in the 
assessment directory. The latter is shown below. 
 

se	  :	  squareExplore.c	  squareExplore.h 
	  	  	  	  cp	  squareExplore.c	  squareExplore.cu	  
	  	  	  	  /usr/local/cuda/bin/nvcc	  -‐arch=sm_20	  -‐o	  se	  -‐lglut	  -‐lGL	  -‐lGLU	  \\	  
	  	  	  	  	  	  	  -‐lXext	  -‐lXmu	  -‐lX11	  -‐lm	  	  squareExplore.cu	  
	  
seNoCuda	  :	  squareExploreNoCuda.c	  squareExploreNoCuda.h	  
	  	  	  	  g++	  -‐o	  seNoCuda	  -‐lglut	  -‐lGL	  -‐lGLU	  -‐lXext	  -‐lXmu	  -‐lX11	  \\	  
	  	  	  	  	  	  	  -‐lm	  	  squareExploreNoCuda.c	  
	  
	  

 
To build the version that uses CUDA, type “make	  se” at a command line. To build the one that 
does not use CUDA, type “make	  seNoCuda”. These create executables “se” and “seNoCuda” 
respectively, which can be run by typing “./se” and “./seNoCuda” respectively. Note that 
several libraries related to OpenGL and CUDA need to be installed, and these will be specific to 
your system. 
 
Also note the “-‐arch=sm_20” flag. This tells the compiler that the code should be targeted for a 
CUDA device of compute capability 2.0 or higher. You may need to change the “20” to 11, 12 or 
13 if you are running on a device of compute capabiltiy 1.1, 1.2 or 1.3, respectively. 
 
IMPORTANT NOTE: Many text editors facilitate writing C code by automatically indenting 
code and highlighting the code by context, and does so by recognizing the “.c” extension of the 
file. Most of these editors do not recognize the “.cu” extension. I’ve therefore been writing the 
code as “.c” files, and then having the Makefile copy them to “.cu” files before compilation. 
This is because the nvcc compiler requires the “.cu” extension. There are other ways to deal 
with this discrepancy... Pick your own. But be aware that this is the workflow that the included 
Makefiles expect. 
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Timing for CUDA vs. non-CUDA versions 
 

The chart below gives a comparison of the number of frames per second that can be rendered 
with and without making use of CUDA. For our tests we used an NVIDIA Telsa C2075 with 448 
CUDA cores, and an AMD CPU running at 3.6 GHz. The “i=…” numbers refer to the number of 
iterations of the “square and add” operation that were performed when computing each grid 
element.  
 

 
 
 

Frames per Second s=0 s=1 s=2 s=3 
Tesla i=1 80 37 12 7.7 
Tesla i=3 89 45 15.2 9.8 
Tesla i=7 108 58 20.2 13.6 
Tesla i=15 115 59 23 15.5 
CPU only i=1 40 13.7 3.5 2 
CPU only i=3 40 13.6 3.6 2.1 
CPU only i=7 32 11.7 3 1.8 
CPU only i=15 33 10.1 2.6 1.5 

 
Interesting Observation:  The frame-rates shown in the table above are higher in all cases 
when we make use of CUDA. Notice that the frame rate increases when we make use of the 
GPU, as we increase the number of iterations. This is because with more iterations, fewer 
quads fall below the threshold for rendering to the screen, so the image may be drawn more 
quickly by OpenGL. But in the CPU-only case, more iterations leads to a lower frame rate, even 
though exactly the same number of quads will be drawn. This is because more iterations means 
more computation for each quad --- exactly where massive parallelism helps. 
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Explorations 
 
The following exercises are designed to give the student an opportunity to practice with the 
ideas presented in this module. Solutions to all the problems are included with the module, in an 
appropriately-named pair of files. 
  

1. Scenes can be viewed in different ways. Currently our Scene is with a Model View. 
Render the scene as a wireframe view. Refer to the glBegin() parameters. Explain why it 
visually looks like it does, instead of one big outlined wire. 
 

2. Create a keyboard shortcut that switches between original rendering and wireframe 
rendering. The rendering state should stay constant even if other callbacks are triggered. 
 

3. Currently the application only Rotates in ‘x’ (g/G key) and ‘a’ (f/F key) direction. 
Implement a 3rd key ‘h’ and ‘H’ to rotate in the ‘z’ direction.‘x’ and ‘a’ both rotate in the 
center of the screen, please follow the same rule with the ‘z’ direction. Refer to 
glTranslatef() and glRotatef() for help. 
 

4. Rotation via keys f/F, g/G and h/H are fine, but using the mouse for rotation would be 
even better. With the same idea as the above keys, write a new function callback that 
registers to glutMouseFunc(), glutPassiveMotionFunc() and/or glutMotionFunc(). 
Creating rotation for ‘x’ and ‘a’ is enough. For assistance on these callbacks, view the 
Registering Callbacks section from the OpenGL introduction PDF. 
 

5. Write a version that will graph general functions instead of our iterated quadratic. For 
example, how would you change the kernel so that it graphs 10*sin(xy) instead?  
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