Journal Of Computational Science Education

Volume 2, Issue 1

Accelerating Geophysics Simulation using CUDA

Brandon Holt
University of Wisconsin—Eau Claire
105 Garfield Ave, Eau Claire, WI
holtbg@uwec.edu

ABSTRACT

CitcomS, a finite element code that models convection in
the Earth’s mantle, is used by many computational geo-
physicists to study the Earth’s interior. In order to allow
faster experiments and greater simulation capability, there
is a push to increase the performance of the code to al-
low more computations to complete in the same amount of
time. To accomplish this we leverage the massively parallel
capabilities of graphics processors (GPUs), specifically those
using NVIDIA’s CUDA framework. We translated existing
functions to run in parallel on the GPU, starting with the
functions where the most computing time is spent. Run-
ning on NVIDIA Tesla GPUs, initial results show an aver-
age speedup of 1.8 that stays fairly constant with increasing
problem sizes. Though many applications can see even or-
ders of magnitude improvement from GPGPU acceleration,
the potential improvement for CitcomS is limited by several
factors, including being bound by MPI collective commu-
nication. With newer GPGPU frameworks such as Fermi,
further performance improvements can be expected, though
a more significant overhaul of the CitcomS code would be
necessary for any significantly better speedup.

General Terms
Parallel programming, GPGPU, finite element

Keywords
CitcomS, Blue Waters Undergraduate Petascale Internship,
CUDA

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee. Copyright ©JOCSE, a supported publication of the Shodor
Education Foundation Inc.

December 2011

Daniel Ernst
University of Wisconsin—Eau Claire
105 Garfield Ave, Eau Claire, WI
ernstdj@uwec.edu

1. INTRODUCTION

Graphics processors are commodity hardware, found in nearly
every modern personal computer, which are highly special-
ized to do all of the computations required to draw pixels on
the screen. For intensive graphics applications such as high-
resolution three-dimensional games, this means transform-
ing, calculating lighting, and mapping and applying textures
on millions of vertices and pixels. To do this, GPUs have
banks of hundreds of small compute cores that process a
stream of data together in parallel. By sacrificing some of
their independence and flexibility, these cores save hugely
on power consumption compared to more general-purpose
CPUs. In addition, in order to keep all of those cores busy,
GPUs have particularly high memory bandwidth.[8]

The high performance computing community has long been
interested in using specialized accelerators to speed up cer-
tain parts of their computations, but these processors were
often prohibitively expensive. In contrast, because of their
commodity nature, GPUs are much cheaper. Instead of sim-
ply drawing graphics on the screen, we are interested in us-
ing these cards for more general purpose work. By using
the massively parallel capabilities of GPUs for computation
across large datasets, applications can see huge performance
improvements. NVIDIA’s CUDA parallel computing archi-
tecture is currently the most popular technology for general
purpose programming of GPUs. Many high performance
applications have seen order of magnitude speedups using
CUDA, including NAMD (nanoscale molecular dynamics)
with a 20x speedup, and Havok FX with 10x speedup for
realtime physics simulation.[10]

In the field of geophysics, CitcomsS is used by many to study
convection problems in Earth’s mantle. By accelerating the
application we can enable simulations with finer detail or
more time steps to complete in the same amount of time.
At this time when single cores are not getting any faster,
speedups come from parallelizing computation. CitcomS
already uses Message Passing Interface (MPI) libraries to
split up work across multiple compute nodes. However, the
price of communicating boundary values limits the amount
that the simulation can be split up in this way. To further
parallelize the work done on each node, we use the mas-
sively parallel capabilities of graphics processors (GPUs).
Using NVIDIA’s CUDA programming model, we are able
to parallelize each node’s data-parallel computations using
CUDA-capable GPUs if they are available. This report dis-
cusses the techniques used to accelerate CitcomS, describes

ISSN 2153-4136 21

Volume 2, Issue 1

performance challenges and optimizations, and lists the re-
sults of our experiments showing speedup of the application
as a whole.

2. BACKGROUND
2.1 CitcomS

CitcomsS is a finite element code developed and supported by
the Computational Infrastructure for Geodynamics (CIG).
Written in C, it has support for MPI to allow it to be run
in parallel on shared and distributed memory platforms. It
is designed to solve compressible thermochemical convection
problems, but it also support variable viscosity and so can be
used to study the movement of plates. The model consists
of a grid of points arranged in a spherical shell (either a full
sphere or a restricted region). Starting with a set of initial
values including temperature, pressure, and velocity at each
point, it repeatedly solves the momentum and advection-
diffusion equations, giving the new state of the system at
each successive time step. An iterative relaxation scheme is
used to solve the partial differential equations for velocity
and pressure across the grid domain, using either a conju-
gate gradient or multi-grid solver to find solutions for the
equations which are represented as discrete matrices.[12]

As a typical finite element code, with its regular grid and
high spatial locality, CitcomS is characterized as a struc-
tured grid problem as defined by Asanovic and colleagues in
their report. Because CitcomS does not do adaptive mesh
refinement, this means that it should be relatively simple
to parallelize by simply breaking up the grid onto different
nodes and sharing updated boundary values between iter-
ations.[3] In fact, this is precisely what is done using MPI
already, and because each point only relies on its immediate
neighbors in the grid, calculations on chunks distributed to
each node should be able to be parallelized even further.

2.2 CUDA Programming Model

While CUDA aims to make GPUs programmable like CPUs,
the mindset is quite different. Instead of one primary thread
(or a minimal number of software threads) on CPUs, the
idea behind the CUDA programming model is to have hun-
dreds or thousands of hardware threads running the same
kernel function on different pieces of a large data set. In gen-
eral, each GPU thread individually runs slower than on the
CPU, but together, hundreds of threads have a much higher
throughput. Because of the less flexible nature of GPU
cores, these threads also have extremely limited branching
options: no function calls are allowed (except inline) within
a kernel.

In the CUDA model, there is a reference hierarchy to threads
with different localities: a block of threads all run on the
same streaming multiprocessor (SM) which has a number of
compute cores, a bank of registers local to each thread, and
a fast shared memory cache. Thread blocks are organized
in a grid, all running the same kernel and sharing the global
memory bank on the GPU. Only threads within a block can
be synchronized using primitive barrier calls. Because global
synchronization is impossible within a kernel, the algorithm
must have work that can be completely de-coupled.

Porting existing CPU code to CUDA primarily involves find-
ing which parts do a lot of computation on a large set of

22 ISSN 2153-4136

Journal Of Computational Science Education

Table 1: Profiling Results
(Conjugate Gradient Solver)

% Time Function
78.82 n_assemble_del2_u
4.70 conj_grad
4.06 global_vdot
3.49 assemble_div_u
2.82 get_elt_k
2.12 assemble_grad_p
1.17 regional_exchange_id_d

data in a serial loop and splitting up that work onto many
threads. However, to get optimum performance, the pro-
grammer must know the intricate details of the hardware
and how they affect performance. Optimization practices in-
clude: managing the severely limited shared memory cache,
coalescing global memory accesses, minimizing in-warp di-
vergence, avoiding bank conflicts, and maximizing thread
occupancy.[9]

3. IMPLEMENTATION

We used the current release of CitcomsS, version 3.1.1, as the
basis of our CUDA accelerated version.

3.1 Profiling

Translating the entire application to CUDA would be neither
practical nor desirable. CitcomS consists of a large codebase,
with many different functions for calculating each parameter
of the simulation. Many of these operations, particularly in-
put and output tasks, are simply not conducive to massively
parallel execution. Therefore, in order to maximize our im-
pact on the overall speed of the code, we carefully profiled it
to see where in the code most of the time was being spent.

Using GNU gprof[4], we ran a series of simulations with dif-
ferent grid sizes and input parameters. Shown in Table 1
are results for a typical run using the conjugate gradient
solver. Actual numbers for each function fluctuated slightly
between different simulations, but the trend was consistent.
It was clear that the function n_assemble_del2_u, at 78% of
the overall time, was where we should focus our efforts to im-
prove the conjugate gradient solver. According to Amdahl’s
Law, the theoretical speedup of an algorithm from paral-
lelization is a function of the speedup of the parallelized
part (S) and the proportion of the computation that this
part represents (P):

1

Speedup here simply refers to the ratio of serial execution
time to the parallelized execution time (S = Tseriat/Tparaiiet)-
Speeding up only n_assemble_del2_u with P = 79%, as-
suming perfect speedup (S = c0), the maximum theoretical
speedup overall would be 4.72.

Further inspection of the code showed that this function
is used to calculate the Laplacian on the discretized tem-
perature, pressure, and velocity matrices, which correspond
to the size of the spherical grid. As we expected for this
structured grid code, this matrix computation corresponds

December 2011

Journal Of Computational Science Education

Input grid points: 1123|415
read in value l l l l l

add to existing value

Threads:

a
N

Output grid points: | ? ? ? ? ? ? ? ?

(a) In the original algorithm, each point added its own
contribution to each of its neighbors’ new values. Con-
currently writing to the same spot in memory from mul-
tiple threads like this leads to nondeterministic behavior
because the reads and writes could happen in any order.

Input grid points: 112|134 |5]6]7]8

St

Output gridpoints: | 3 | 6 | 9 |13]|15]|18 |21 |15

read in neighbors

Threads:

write total

(b) To eliminate conflicting read /writes, the algorithm was
restructured so that each thread calculates its own new
value by computing what each of its neighbors would have
contributed based on their current values and storing just
its own value.

Figure 1: Reordering Reads and Writes

to an operation being executed across all points in the spher-
ical grid, marking this as a good candidate for GPU execu-
tion and making this our primary target for translation to
CUDA.

3.2 Translation

The first part of translating n_assemble_del2_u was decid-
ing how to break up the work onto GPU threads. For CUDA,
using as many threads as possible is often the best option.
Each streaming multiprocessor can execute several blocks of
threads. If a large number of threads in the same block make
memory requests, they can queue up waiting for their data
while other threads are executed. Also, if these threads ac-
cess memory local relative to each other, their accesses can
be coalesced into a single global load. Therefore, the more
threads the CUDA scheduler has available in each thread
block, the more opportunities it has to hide memory laten-
cies. On the other hand, once each thread gets its memory,
it ought to have a significant amount of work to do with it,
otherwise all the time used getting the memory there was
wasted.

Taking those factors into consideration, we decided to make
each thread handle a single grid point. This is justified be-
cause the calculation of each point requires aggregating val-
ues from several matrices for each of its neighbors. In the
original CPU code for n_assemble_del2_u, there was a pri-
mary loop that iterated over each point in the grid, so we
simply refactored it into a CUDA kernel, using the thread
and block IDs in place of the loop variable.

December 2011

Volume 2, Issue 1

However, running iterations of a loop concurrently intro-
duces problems that did not exist when run serially. Threads
running on the GPU have extremely limited synchronization
options. CUDA cards with compute capability of at least 2.0
introduced some atomic store operations but at a significant
performance hit from serialization. Without synchronizing,
it is unsafe for concurrent threads to write to the same spot
in memory, so kernel functions should be designed such that
each thread will have “ownership” of a subset of memory
that only it stores results into. In the case of our kernel,
each thread was straightforwardly responsible for calculat-
ing its own grid point’s future state. However, each iteration
of the original loop had one loop over its neighbors where it
incremented each neighbor’s values based on its own value.
This would have led to multiple threads concurrently incre-
menting the same spots in memory, resulting in nondeter-
ministic behavior. Fortunately it proved possible to reverse
the second loop so that each thread pulled together all the
values that were previously being incremented, resulting in
a working, deterministic CUDA translation, calculation for
calculation. See Figure 1 for an illustration of this.

3.3 Verification

Because our goal is a functionally equivalent refactoring, it
was essential that we verified our function’s output with
the original at every step of development. This was ac-
complished by simply executing both versions each time
n_assemble_del2_u was called. A single array constitutes
the output for the function, so both original and CUDA out-
put were stored, with the following condition used to flag an
error:

i =yl fyi‘ > 5.0 x 10717

where y; is an element in the original function result and
x; is the corresponding CUDA result. Even though it is
expected that all of the same calculations will be done, some
small floating point precision error is expected due to some
the reordering of calculations and minor differences in how
GPU cores implement floating point operations, but those
errors should be relatively insignificant.

3.4 Optimization

As mentioned before, the CUDA architecture can provide
massive amounts of parallel computation with particularly
high memory bandwidth. However, achieving that maxi-
mum performance is not always possible, and approaching
that limit is what the majority of the novel work for this
project was devoted to. Here we will step through several
major iterations of the CUDA kernel, highlighting the most
relevant performance aspects of each.

The CUDA profiler is a very simple tool which comes bun-
dled with the CUDA framework, but it was particularly use-
ful for diagnosing each of the bottlenecks described below.
The profiler is very simple and supports the output of only
four variables from a list of over 40 options. On systems with
CUDA installed, profiling can be enabled by setting an envi-
ronment flag (CUDA_PROFILE=1) before executing the CUDA
program. Values of each variable for every kernel invoca-
tion is sent to a file (./cuda_profile0.log by default).[7]
Below we will highlight profiling options we used to obtain
information we needed about our kernel’s performance.

ISSN 2153-4136 23

Volume 2, Issue 1

Table 2: Kernel Optimizations
Speedup shown is for the ratio of the original CPU
function’s execution time to the time spent executing the
n_assemble_del2_u kernel itself.

Time (ms) Speedup
Original: 2.00 1.00
Kernel 1: 880 0.0023
Kernel 2: 21.78 0.09
Kernel 3: 0.44 4.55
| Kernel 4: 0.29 6.90 |

Kernel 1: The first working implementation of the kernel
was 400 times slower than the original CPU version. On
the CPU there are several layers of caches that make sure
that successive reads and writes to a chunk of memory are
as fast as possible, which are automatically handled in hard-
ware on most systems. Because access patterns are poten-
tially much more complicated to predict for thousands of
threads, automatic caching is only available for the newest
CUDA architectures. Therefore, in this first kernel, when
each thread accesses its nearest neighbors’ values, it must go
all the way to global GPU memory, an operation that takes
on the order of milliseconds. The GPU memory manager
can coalesce memory accesses, that is load multiple threads’
values all together, if the accesses are sequential and regular.
However, because each thread is accessing each of its neigh-
bors’ values, which are not contiguous, these accesses are
not able to be coalesced, even on newer architectures where
caching is handled automatically. The CUDA Profiler op-
tions gld_incoherent, gld_coherent, gst_incoherent and
gst_coherent show the number of uncoalesced (incoherent)
loads and stores compared to coalesced ones. Ideally, there
should be no incoherent loads or stores, which was achieved
in subsequent kernels.

Kernel 2: Luckily there are closer and faster memory banks
available on each streaming multiprocessor that can be shared
among threads in a block. Moving the most heavily accessed
data in our kernel into this shared memory can easily be
done in a coalesced fashion, and once in this cache, accesses
to the data are comparable to working with registers. In
our kernel, the most heavily used array, which we deter-
mined by counting the number of reads from it in our code,
is Node_map, which holds a map of each grid point to indices
for all of its neighboring points. By explicitly loading all of
the maps for each thread in a block into shared memory at
the beginning of the kernel, the global accesses are regular
and sequential, allowing the loads to be coalesced, and all
subsequent accesses are essentially free. We were able to
observe this on the CUDA cards with compute capability of
1.3 by observing a significant drop in the number of global
loads (gld_incoherent and gld_coherent) from millions of
loads to 40,000-80,000 per invocation (varying depending
on the amount of branching, actually). Note: newer cards
with compute capability greater than 2.0 have the option of
outputting shared memory loads and stores directly.[7] Just
doing this sped up the kernel by 40 times. Clearly even mi-
nor changes to CUDA kernels can either severely damage
performance or greatly improve it.

Kernel 3: Using an array of indices to map into another
array is a common method of saving computation time on

24 ISSN 2153-4136

Journal Of Computational Science Education

the CPU because it allows for all the neighbors to be cal-
culated once and then simply looked up every subsequent
time they are needed. This made sense on the CPU where
there was a deep cache and only one compute unit. On the
GPU, however, it often makes sense to recompute some val-
ues if it would take less time than waiting on extremely slow
un-cached memory accesses. Once an (z,y, z) location in
the grid is calculated from the thread index, three levels of
nested loops can iterate over all the neighbors by simply os-
cillating on each side of each dimension. This was observed
again as a drastic decrease in the number of global loads
in our profiling results. Eliminating Node_map in this way
improved the performance of the kernel nearly another 50
times.

Kernel 4: With Node_map no longer taking up space in
shared memory, other data was able to take its place. How-
ever, the Tesla generation of CUDA cards have only 16 kilo-
bytes of shared memory per multiprocessor.[8] Even just the
primary input array will not fit completely in shared mem-
ory for typical grid sizes. Because we have such limited
synchronization ability, we must ensure that all values of
the array that might need to be accessed by a thread in a
block are pre-loaded into shared memory. By loading in a 3-
dimensional tile of points surrounding the points referenced
by the current block of threads, we are able to maximize the
amount of caching we can do.

Working off of the final kernel design, there were a number
of minor changes that we tried to maximize our usage of
all of the GPU’s resources. Each multiprocessor can have
up to eight resident blocks, which allows it to hide mem-
ory latencies by scheduling warps from other blocks to run
while some are waiting. This occupancy is determined by
the amount of registers allocated per thread, the number of
threads, and the amount of shared memory that each block
uses. Using the verbose ptxas compiler option, the program-
mer is able to see these parameters, and the CUDA profiler
displays the precise occupancy of each kernel invocation as
well. Using the CUDA Occupancy Calculator, a spreadsheet
available from NVIDIA’s website, developers can put in the
various parameters for their run, such as shared memory
and register usage and it will show what the limiting factor
for occupancy is.[6] Using this and the output of the CUDA
profiler, it was clear to us that the major limiting factor was
the number of registers being used by each thread, which we
were unable to minimize. Instead, we adjusted the number
of threads per block, observing the performance of each ker-
nel and settling on the best configuration. We found that
192 threads per block best balanced the tradeoff between
using too many registers and losing shared memory benefits
by having thread blocks that are too small. However, these
results would not be optimal for other CUDA architectures.
It would have to be retested and optimized for each archi-
tecture to achieve maximum performance.

At this point, even with that primary array taking up all
available space in shared memory, there are still several more
global arrays that are accessed regularly during the compu-
tation. Several large floating point arrays that represent the
stiffness matrix are much too large to for us to cache. As
a result, our threads are constantly waiting on slow global
memory loads instead of making full use of the GPU com-

December 2011

Journal Of Computational Science Education

pute units. There are a number of other performance issues
that affect kernels at the instruction level, such as branch
divergence when threads executing in lock-step on an SM
take different paths and must be serialized, and bank con-
flicts when shared memory accesses are strided incorrectly.
However, examining and eliminating these kinds of issues
is only useful when the majority of the time is already be-
ing spent executing instructions. Because we are bound by
memory accesses, not by compute resources, there is little
more that can be done to further optimize the kernel.[5]

3.5 Automatic Integration

Not all users will have NVIDIA GPUs available, so we pro-
vide users of CitcomS with the option to use the CUDA-
accelerated version or not. Autoconf and automake are two
tools already being used in the code to automatically find
libraries and configure the build. A simple addition to the
configure script adds an option to build with CUDA support.
However, we also did not want to require that everyone us-
ing CitcomS on a particular cluster would be required to
use the CUDA version, nor did we want to force two ver-
sions to be built for such a small difference in code. When
built with CUDA support, our use_cuda option is added to
the configuration file that is used to specify each simulation,
which can be used to select the CUDA-accelerated version
at runtime with little to no overhead.

4. RESULTS

In the section on Optimization and in Table 2, our speedups
only referred to the computation of the n_assemble_del2_u
function. To see how these results translated into overall
system acceleration, we ran a series of simulations and mea-
sured their runtimes. Each simulation was run twice per
trial, once using the original CPU-only version and once with
the CUDA version. Shown in Figure 2 are average times for
three runs of a typical simulation with varying grid sizes and
number of MPI processes, run using Tesla-generation cards
that were available on Earlham College’s Al-Salam cluster[1]
and NCSA’s Lincoln cluster[2]. Our timings for each setup
had standard deviations of less than 5% of the average times
after 3 trials, with most times varying less than 2.0 seconds
between trials. Because of this consistency, the three tri-
als should be accurate enough to make judgements about.
Similar results were observed for several other simulations
using different physical parameters (varied initial conditions
and viscosity parameters), which was expected because this
function is an integral part of both solvers, so its usage pat-
tern is highly regular.

Seen in Figure 2a, as the problem size was increased, better
speedups were observed. This is because as we increase the
number of grid points, we were able to better take advantage
of the massive parallelism provided by the GPU. However,
the speedup tapered off around 1.8x, which we hypothesize is
because the amount of memory that needs to be transferred
to and from the GPU increases as well. From Figure 2b,
it can be seen that the speedups we observe in the one-
node case do not scale perfectly with increasing number of
MPI processes. However, larger problem sizes still showed
greater speedups. This is to be expected because for the
same problem size, increasing the number of MPI processes
gives each CUDA kernel smaller pieces of the grid to work
with, which was just shown in Figure 2a to make speedup

December 2011

Volume 2, Issue 1

worse. Therefore overall, the best performance is still to be
had with larger grids because it will give the best CUDA
performance and allow more divisions into MPI processes.

Based on the actual speedup of n_assemble_del2_u, we can
revisit Amdahl’s Law, this time with S = 6.9 and P =
78.82% still. This results in a predicted overall speedup of
3.07. This is obviously less than the theoretical best we
computed of 4.72 which is to be expected because perfect
speedup is obviously impossible. However, it is significantly
better than the 1.8x we actually achieved. This can be partly
explained by the time needed to allocate and copy all of
the memory onto the GPU, which was not included in the
kernel timings because the memory copies are done in several
different places in the code. Despite the high bandwidth to
the GPU, the entire set of data used within the function
must be transferred both ways every time it is called.

5. FUTURE WORK

As the CUDA-accelerated version of CitcomS stands right
now, one function, n_assemble_del2_u, has been success-
fully translated and optimized for NVIDIA Tesla GPUs.

5.1 Multi-grid Solver

As previously stated, n_assemble_del2_u played the great-
est role in the conjugate gradient solver. While it also was
used in the multi-grid solver, another function, gauss_seidel,
was the most time-intensive function there. We spent some
time attempting to translate this function as well so that
both solvers could be significantly accelerated. However, it
proved significantly more difficult than the previous transla-
tion. For n_assemble_del2_u, all of the calculations simply
read from the original array and stored their new values in
the output array. The Gauss-Seidel method is an iterative
relaxation method for solving a linear set of equations. It
is based on the simpler Jacobi method which averages its
nearest neighbors’s current values to compute its own new
value. In order to converge in fewer iterations, Gauss-Seidel
makes use of any new values that are available in calculat-
ing each new value.[11] This is perfectly acceptable in a seri-
ally executed loop, but when loop iterations are run concur-
rently, this causes problems. This meant that we could not
do a functionally equivalent translation of gauss_seidel.
We made several attempts to write a Jacobi function that
would operate in the same way as gauss_seidel but simply
required more iterations to converge. However, everything
we tried caused issues when run as part of the multi-grid
solver, causing the solutions to never converge or to end
up at infinity. At this time, the code has been left out of
the production version of our CUDA-accelerated CitcomsS.
Perhaps with more experience with numerical methods we
would be able to find the places where our Jacobi method
failed to duplicate what the Gauss-Seidel function was doing.
It might be that future work could be done to re-implement
the multi-grid solver from the ground up in CUDA.

5.2 MPI Communication Barriers

Beyond the Gauss-Seidel/Jacobi issues, the most obvious
course for future work would be to continue translating more
of CitcomS’s code to CUDA. However, there is a limit to the
amount that patchwork translation such as this can be used
to improve overall performance. The existing MPI commu-

ISSN 2153-4136 25

Volume 2, Issue 1

Journal Of Computational Science Education

Figure 2: Speedup Results
Timing results used for speedup calculations are each averages of at least 3 separate runs.

(a) Scaling Problem Size

o
=)
8 1.5
o
Q
[7)
1.4
13 -m-A|-Salam
12 ~+-Lincoln
1.1
1
0 20000 40000 60000 80000 100000 120000 140000 160000

Number of grid points

Grid Size | Orig. (s) CUDA (s) | Speedup

2601 26.79 19.856 1.3492
36465 745.68 431.23 1.7292
71825 1609.46 847.04 1.9001

139425 5116.58 2712.16 1.8865

nication pattern in CitcomS frequently does collective op-
erations sharing updated boundary values among all of the
processes to keep the individual pieces of the grid synchro-
nized. These MPI calls are an absolute barrier to what can
be computed uninterrupted on the GPU. Prior to commu-
nication, the kernel must complete and the values must be
copied back to main memory from the GPU’s memory. Once
communication is complete, the data can be copied back to
the GPU and the kernel resumed. With these hard bar-
riers in place, even if all data-parallel computations were
done by the GPU, the limiting factor would be all the mem-
ory movement. A more complete rewrite of the CitcomS
codebase might be able to minimize the amount of commu-
nication needed and perhaps coalesce it into a single update
per step. However, with current cluster architectures where
all inter-node communication goes through CPU nodes, the
communication will likely still be a major limiting factor.

5.3 Other Directions

Future work on accelerating CitcomS could go several direc-
tions. If a version that will work across different vendors
is desired, an OpenCL version of the current translation
should be straightforward because the basic kernel model re-
mains largely unchanged between the two. Along the same
vein, the current version has certain parameters, such as
the number of threads per block, hand-optimized and hard-
coded into the source. Running optimally on even the newer
Fermi generation of GPUs, which have larger shared mem-
ory caches among many other improvements, would require
adjusting these parameters based on experimental results.
For other GPU architectures similar adjustments would need
to be made. Perhaps some future work could be done to

26 ISSN 2153-4136

(b) Scaling MPI Processes

~4=33x65x17 grid

~4-65x65x17 grid

=-65x129x17 grid

1 2 4 8 16 32 64
MPI Processes

MPI | 33x65x17 65x65x17 65x129x17
1 1.728 1.864 2.024

2 1.840 1.846 2.075

4 1.736 1.871 2.037

8 1.302 1.742 1.699

16 1.215 1.466 1.618
32 0.992 1.106 1.418
64 0.757 0.924 1.130

automate this optimization task, for CitcomS or for CUD-
A/GPGPU applications in a more general sense. Because
GPU acceleration is a highly popular area of research right
now, it is likely that many new tools will soon be available
to potentially be applied to CitcomS.

6. REFLECTIONS

This project was not only a scientific venture attempting to
enhance geophysicists’ tools. As part of the Undergraduate
Petascale Internship Program, the goal is also to enhance
undergraduate education, so here I will reflect on my own
experience and how it can be duplicated for other under-
graduates.

Working on this project has given me a great deal of expe-
rience working on a number of different high performance
clusters. The two-week workshop at the beginning of the
summer kickstarted my work, but through the process of
studying, translating, and optimizing, I have gotten much
more comfortable with it all. I have become adept at de-
bugging all kinds of issues with building, installing, and run-
ning all manners of programs. In working with CUDA for
the last year, I have come to understand the architecture in
great depth, and I have a feeling for a wide variety of pro-
gramming problems and performance issues. Because of my
experience with CUDA and connections through the UPEP
instructors, I have gotten the opportunity to help as an as-
sistant instructor at an intermediate parallel programming
workshop, as well as at this year’s Blue Waters UPEP Insti-
tute. These teaching experiences have further reinforced my
understanding of all of the parallel programming techniques
that are taught there. I think getting undergraduates to

December 2011

Journal Of Computational Science Education

spend a summer digging down into real scientific code and
get their hands dirty writing real high performance code will
give them experience that will be invaluable to them in pur-
suing a research career later.

While working at the extremely low-level of CUDA opti-
mization has helped me understand the architecture and
programming model quite well, I have recognized that the
amount of time it took me to get better at this is simply
not efficient for the majority of programmers to do. In
the coming age of computing, it is likely that, in order to
continue to scale in performance without excessive power
expenditure, computing will become increasingly heteroge-
neous, with specialized processors such as GPUs playing an
important role. It is already infeasible to expect every pro-
grammer to become an expert in all of the different kinds
of accelerator hardware that are available now. My work
hand-tooling CUDA code and optimizing it by experimen-
tation and often guesswork has made it obvious to me that
new programming models need to be explored.

I am interested in finding out how to separate the mechani-
cal processes, such as finding the optimal number of threads
per block or managing limited shared memory space, from
the creative ones, such as thinking of the best way to par-
allelize the algorithm. The mechanical tasks could be ac-
complished in many different ways, either by the compiler
at build time, by a runtime system, or one of many other
techniques. Another interesting area of research would be
to better facilitate the creative part so that programmers
can effectively represent their ideas in a way that compilers
and the rest can take advantage of the available compute
resources.

In the interest of pursuing these research directions, I will
be attending graduate school at the University of Washing-
ton. My planned research goal stems from these issues with
programming in CUDA: I am interested in applying aspects
of programming languages, compilers, runtime systems, and
software engineering tools to assist programmers in devel-
oping applications for the heterogeneous parallel computers,
smart phones, or other ubiquitous computing devices that
will need software in the future.

7. ACKNOWLEDGEMENTS

This research was conducted through the Blue Waters Un-
dergraduate Petascale Education Program (BW-UPEP). In
an effort to broaden and diversify the high performance com-
munity, this program funds a number of undergraduate stu-
dents to do computational science research with a faculty
advisor for a summer, as well as a stipend to continue their
research during the school year. To prepare these students
for their projects, they attend a two week workshop on par-
allel programming, scientific computing, and high perfor-
mance architectures. Thanks to Shodor and the National
Computational Science Institute (NCSI) for their financial
support of this internship.

This research was supported in part by the National Science
Foundation through TeraGrid resources provided by the Na-
tional Center for Supercomputing Applications (NCSA) un-
der grant number TG-CCR100014.

December 2011

Volume 2, Issue 1

Thanks also to Charlie Peck from the Computer Science
Department at Earlham College for the use of their Al-
Salam cluster. Thanks also to the University of Wisconsin—
Eau Claire Chemistry Department and Professor Christine
Morales for use of their cluster, EB-Wilson.

8. REFERENCES

[1] Earlham College Cluster Computing Group.
http://cluster.earlham.edu/.

[2] NCSA Scientific Computing: Intel 64 Tesla Linux
Cluster Lincoln.
http://www.ncsa.illinois.edu/UserInfo/
Resources/Hardware/Intel64TeslaCluster/.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[4] S. L. Graham, P. B. Kessler, and M. K. Mckusick.
Gprof: A call graph execution profiler. SIGPLAN
Not., 17:120-126, June 1982.

[5] D. B. Kirk and W. W. Hwu. Programming Massively
Parallel Processors. Morgan Kaufman Publishers,
2010.

[6] NVIDIA. Cuda occupancy calculator.
http://developer.download.nvidia.com/compute/
cuda/CUDA_Occupancy_calculator.xls.

[7] NVIDIA. CUDA Profiler README, Version 3.0.
NVIDIA, 2009.

[8] NVIDIA. Nvidia’s next generation cuda compute
architecture: Fermi, white paper. Technical report,
NVIDIA Corporation, 2009.

[9] NVIDIA. CUDA C Programming Guide, Version 4.0.
NVIDIA, March 2011.

[10] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879-899, 2008.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
1988.

[12] E. Tan, M. Gurnis, L. Armendariz, L. Strand, and
S. Kientz. CitcomS: User Manual. Computational
Infrastructure for Geodynamics (CIG), 3.1.1 edition,
July 2009.
http://geodynamics.org/cig/software/citcoms.

ISSN 2153-4136 27

