
Computational Algebraic Geometry as a Computational
Science Elective

Adam E. Parker
Department of Mathematics and Computer Science

Wittenberg University
P.O. Box 720

Springfield, OH 45501
aparker@wittenberg.edu

ABSTRACT
This paper presents a new mathematics elective for an un-
dergraduate Computational Science program. Algebraic Ge-
ometry is a theoretical area of mathematics with a long
history, often highlighted by extreme abstraction and dif-
ficulty. This changed in the 1960’s when Bruno Buchberger
created an algorithm that allowed Algebraic Geometers to
compute examples for many of their theoretical results and
gave birth to a subfield called Computational Algebraic Ge-
ometry (CAG). Moreover, it introduced many rich applica-
tions to biology, chemistry, economics, robotics, recreational
mathematics, etc. Computational Algebraic Geometry is
usually taught at the graduate or advanced undergraduate
level. However, with a bit of work, it can be an extremely
valuable course to a sophomore student with linear algebra
experience. This manuscript describes Math 380: Computa-
tional Algebraic Geometry and shows the usefulness of the
class as an elective to a Computational Science program. In
addition, a module that gives students a high-level introduc-
tion to this valuable computational method was constructed
for our Introductory Computational Science course.

Keywords: Gröbner Bases, Computational Science, Course
content, Tools for teaching, Methods of instruction.

1. INTRODUCTION
In 2003 Wittenberg University created a Computational Sci-
ence minor. This interdiciplinary minor, as with many Com-
putational Science programs, lies at the intersection of math-
ematics, computer science, and the natural sciences (broadly
defined). The goal is the application of computer technol-
ogy to improve the understanding about the world around
us. Indeed, much of the success of Wittenberg’s Compu-
tational Science program has been in using computational
software (such as Mathematica, Autodesk Maya 2008, Spar-
tan ’06, Excel, etc.) to construct and solve models in the
natural and social sciences. Up to this point, all of the upper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c© JOCSE, a supported publication of
the Shodor Education Foundation Inc.

level electives for our minor had been housed in natural or
social science departments.

The following course grew from a desire to provide a Compu-
tational Science elective in mathematics with the following
properties.

• This course must have few prerequisites. We don’t
want to exclude students for lack of advanced mathe-
matical experience.

• This course must not be a “black box”. We want the
student to truly understand the algorithms that are
being implemented in a computational program and
how they work.

• This course should address a modern technique. We
want to show that new mathematics can be approach-
able to undergraduates, with the hope of exciting them
about the field.

• This course should involve an in-depth mathematical
study of a computational technique. We would want
to develop the algorithm from first principles, prove
theorems, and study consequences of the technique.

• This course must have theoretical (in addition to ap-
plied) connections to mathematics itself. In our com-
putational science program, students rarely see how
the computational skills, both symbolic and numeric,
can advance abstract mathematics.

• This course should be platform independent. We don’t
want the student to learn a software package, but rather
a process.

• This course absolutely must have extensive and mean-
ingful applications to the sciences - hopefully to several
distinct fields. After all, this is the essence of compu-
tational science.

A CAG course was chosen because it satisfies all of these cri-
teria. For example, while CAG is an active area of research
in both mathematics and computer science, it can be taught
to any student with a prior introductory course in Linear Al-
gebra, hence we can keep the prerequisites at a sophomore
level. It satisfied the desire for a contemporary topic since
CAG deals with an algorithm developed in the 1960’s. The

Volume 1, Issue 1 Journal Of Computational Science Education

2 ISSN 2153-4136 December 2010



algorithm is implemented on every major Computer Algebra
System (CAS) so it is essentially platform independent.

But most importantly, this algorithm has major applications
across the curriculum. At its heart, CAG deals with solving
systems of polynomial equations, and as noted in the AMS
review of [18], “A classic problem in mathematics is solv-
ing systems of polynomial equations in several unknowns.
Today, polynomial models are ubiquitous and widely used
across the sciences. They arise in robotics, coding theory,
optimization, mathematical biology, computer vision, game
theory, statistics, and numerous other areas.” Indeed project
topics in this course ranged across this spectrum.

This paper shows how the Computational Algebraic Geom-
etry course was created. We begin with a quick overview of
what CAG is. We then discuss the prerequisites and orga-
nization of the course. Next we examine the computational
software that is utilized and describe the projects that stu-
dents completed, one of which resulted in a publication for
a student.

The rest of the paper concerns benefits and challenges of the
course. It is our hope to show that this class can be a valu-
able elective for a Computational Science curriculum, and
a useful module for a Computational Models or Algorithms
class.

2. THE COMPUTATIONAL ALGEBRAIC
GEOMETRY COURSE

2.1 Overview of Computational Algebraic
Geometry

While algebraic geometry can be difficult and abstract, at
its core it is merely concerned with solving systems of poly-
nomial equations. The problem of simultaneously solving a
system of polynomial equations is ubiquitous in mathemat-
ics. Undoubtedly our linear algebra students learned how
to solve a system of linear equations using a method such
as Gaussian Elimination or Cramer’s Rule. In a more ad-
vanced class they may have learned some helpful techniques
for solving a system of polynomials of arbitrary degree in
one variable such as finding a greatest common divisor (gcd)
using the Euclidean Algorithm or by computing a resultant.

These methods are classical, going back hundreds of years.
However it wasn’t until the 1960’s that Bruno Buchberger
came up with a generalization that took the “arbitrary num-
ber of variables” from Gaussian Elimination and the “arbi-
trary degree” from the Euclidean Algorithm and combined
them into one powerful method called (predictably) Buch-
berger’s Algorithm. Learning this algorithm was an essential
part of the course.

The idea is that we start with a system of s polynomials
in n variables with coefficients in a field K. We’ll call it
{f1, . . . , fs} ⊆ K[x1, . . . , xn]. By running Buchberger’s al-
gorithm one finds a different set of polynomials {g1, . . . , gt} ⊆
K[x1, . . . , xn] with many nice properties. Two of the most
essential are:

• The new set of polynomials must have an identical
set of common zeros as the original polynomials (more

specifically, they generate the same ideals in
K[x1, . . . , xn]).

• The new set of polynomials should (hopefully) be eas-
ier to solve than the original.

This new set of polynomials is called (not so predictably) a
Groebner Basis for {f1, . . . , fs} after Buchberger’s advisor,
Wolfgang Gröbner (we’ve anglicized the spelling).

As implied above, a Groebner Basis can be defined over any
field K, and indeed in this class we mathematically defined a
field and gave many examples of them. However, in practice
the course only dealt with when K was R or C. The R case
was useful when we were graphing examples and we would
use C when we needed to completely factor our polynomials.

As a simple example, suppose that you wanted to find the
intersection of a circle (x2 + y2 − 1

4
= 0) and a figure eight

((x2 + y2)2 − x2 + y2 = 0) which comes down to simul-
taneously solving both of these equations. It is tedious to
substitute and solve (and you could imagine that more com-
plicated examples make this difficult.) However, if we run
Buchberger’s algorithm, we find a Groebner basis for the
above system is {32y2 − 3 = 0, 32x2 − 5 = 0} and from
this we can immediately find the four intersecting points are

(±
q

5
32

,±
q

3
32

). (See Figure 1). For details on the actual

algorithm, please see the excellent text [4].

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1: The Four Points of Intersection

Pertinent to this paper is the fact that this method is com-
putationally intensive, though the algorithm itself is simple.
All the major CAS such as Mathematica and Maple (and
many others) contain Groebner Basis solvers, and several
free software packages such as SAGE, Macaulay2, Groebn-
erFan are available on every platform. Wolfram’s Alpha web
site will compute Groebner Bases via the internet. This par-
ticular course utilized Mathematica, though some students
downloaded SAGE or GroebnerFan onto their personal com-
puters.

In 2008, Bruno Buchberger won the Association for Comput-
ing Machinary Paris Kanellakis Theory and Practice Award,
which is awarded for theoretical advances in computer sci-
ence that significantly affect the field. The award announce-
ment states, “ACM (the Association for Computing Machin-
ery) has recognized Bruno Buchberger, a professor at Jo-
hannes Kepler University in Linz, Austria, for his role in
developing the theory of Groebner Bases, which has become
a crucial building block to computer algebra, and is widely

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 3



used in science, engineering, and computer science. Buch-
berger’s work has resulted in automated problem-solving
tools to address challenges in robotics, computer-aided de-
sign, systems design, and modeling biological systems”. [2].

This announcement proved to the students that this was
a truly important method that had “significantly” changed
computer science as well as multiple other fields. It also
showed this was modern mathematics as compared to some
of the classical techniques they are familiar with from Com-
putational Science (such as Euler’s method for Differential
Equations or Lagrange Multipliers for Optimization).

2.2 Background of Students
Wittenberg University is a school of approximately 2000 un-
dergraduate students with no graduate program in the sci-
ences. We graduate approximately 14 math majors a year,
4 computer science majors, and 7 computational science mi-
nors. A similar course to ours is taught at many schools,
but typically geared solely to mathematics majors, and of-
ten requires a modern algebra course and / or a course in
programming. However, in an attempt to attract a broad
audience to the Wittenberg course, the only prerequisite
was a sophomore level linear algebra class. This was chosen
since Buchberger’s Algorithm is a generalization of some lin-
ear algebra algorithms presented in that class and a passing
knowledge of linear combinations and independence is help-
ful. No knowledge of programming, Mathematica, proofs,
etc. was required. This version of the course was an elective
for both the math major and the computational science mi-
nor, hence fewer prerequisites. Thirteen students enrolled
in the class, six of which were women. One faculty member
sat in regularly.

2.3 Course Process
First offered in the spring of 2008, The course covered the
first three chapters of the highly-recommended text Ideals,
Varieties, and Algorithms by Cox, Little, and O’Shea [4].
Topics covered included:

• Basic definitions, such as ideal, variety, parametriza-
tion, generators, etc.

• Basic ideal theory.

• A review of polynomials in one variable and the GCD
of a set of polynomials.

• Monomial orderings and monomial ideals.

• A division algorithm in K[x1, . . . , xn] (i.e. a division
algorithm for several polynomials with each in multiple
variables).

• Hilbert’s Basis Theorem, Groebner Basis, Buchberger’s
Algorithm.

• Applications - Ideal membership, solving equations,
elimination of variables, singular points, etc.

The first nine weeks of the semester consisted of three, hour-
long lectures a week. In the classroom, there was one in-
structor computer with a projector, but no student comput-
ers. Mathematica was illustrated in the daily lectures but

at this point much of the material lent itself to standard
blackboard lectures. Relevant Mathematica examples were
posted on the web. Weekly assignments, all which required
Mathematica for either numerical calculations (usually for
graphing) or symbolic computation (usually for polynomial
manipulation), were collected and graded. Most computers
on campus have Mathematica installed, and our site-license
allows for students to install copies on their personal com-
puters.

After we had covered Buchberger’s Algorithm, the students
chose project topics. The last six weeks of classes switched
to two lectures a week and a one-hour lab which was held in
a room with student computers so that students could work
on their projects. There were two hour-long exams and a
final. All exams consisted of an in-class portion (where all
computation needed to be done by hand) as well as a take-
home portion that required use of a computer.

2.4 Technology
While every calculation in the course could conceivably be
done by hand, Mathematica was an essential part of the
course. Not only did it save time and prevent algebra mis-
takes, it was also extremely valuable in plotting the curves
and surfaces. Commonly used commands were:

• Plot, ContourPlot, ContourPlot3D, Manipulate,

ParametricPlot, ParametricPlot3D for visualization.

• PolynomialReduce, PolynomialGCD, PolynomialQuo-

tientRemainder for long division of polynomials.

• GroebnerBasis for the implementation of Buchberger’s
algorithm.

In Mathematica, computing the example of a circle and
figure-eight is done in the following way:

GroebnerBasis[{x2 + y2 − 1

4
, (x2 + y2)2 − x2 + y2}, {x, y}]

which returns {−3 + 32y2,−5 + 32x2}.

The text has an Appendix on the GroebnerBasis imple-
mentations in AXIOM, CoCoA, Macaulay2, Magma, Maple,
Mathematica, and SINGULAR so the text can be used with
a wide variety of software packages.

2.5 Projects
Every student needed to complete an in-depth project which
either looked at the applications to Groebner Basis to an-
other field or examined a theoretical topic that we didn’t
cover in the course. Before choosing their topics, I took one
class and discussed in generalities some possible projects,
though it was clear that students were free to pick any topic
they wanted. There were several intermediate deadlines de-
signed to keep the projects on track to finish on time. Stu-
dents worked in pairs, and had to create both a poster and
a paper. The posters were presented at a class “open house”
where other faculty and students attended. We did run into
computational limitations with some of the projects, usually
concerning memory. All students were able to complete at
least modified versions of their stated projects. Since run-
ning the course in the spring of 2008, Wittenberg has placed

Volume 1, Issue 1 Journal Of Computational Science Education

4 ISSN 2153-4136 December 2010



Mathematica on their computing cluster, which will be valu-
able in future iterations of the course.

Below is a short description of the projects from the course,
as well as a (very) short bibliography for additional reading,
hopefully showing the breadth of applications. Computation
entered into these projects in a variety of ways, though typ-
ically the students created a model using polynomial equa-
tions, and then computed a Groebner Basis for that system.
They had to “solve” the model by extracting the relevant
information from that Groebner Basis.

2.5.1 Theoretical Projects
A Walk with Groebner A Groebner Basis is not unique,
but rather depends on a choice called the “monomial order-
ing”. It turns out that an interesting project is determining
which “monomial orderings” give the same Groebner basis
and which give distinct ones. This partitions the space of
all monomial orderings into a so-called Groebner Fan.

The run-time of the algorithm depends heavily on this choice
of ordering. It turns out that it may be faster to compute the
Groebner Basis for a “fast” monomial ordering and convert
that Groebner Basis to a second basis associated to a “slow”
ordering than to just compute the basis with the “slow” or-
dering at the outset. The algorithm involves creating a path
in the space of all monomial orderings that starts at the cur-
rent ordering and ends at the desired ordering. When trav-
eling along the path and you cross a wall in the Groebner
Fan, the Groebner Basis will change. Keeping track of these
changes will convert the original Groebner Basis to the new
one. This algorithm for converting between bases is called
a Groebner Walk, and is implemented in Mathematica and
other packages. [8] [3] [6].

Solving the Frobenius Problem Using Groebner Bases This
project dealt with a question in number theory called the
Frobenius Problem. It asks if given a set of nonnegative
numbers {a1, a2, . . . , an} with gcd = 1, then what is the
largest nonnegative number that can’t be written as a com-
bination of these numbers with positive coefficients.

For example, consider the set (4, 9). Since gcd(4, 9) = 1, any
number can be written as a combination of 4 and 9 if we al-
low negative coefficients. Obviously small numbers such as
1, 2, 3, 5, 6, etc. can’t be written as a combination with pos-
itive coefficients. The Frobenius problem asks what is the
largest such number (and there always is one). In this case it
is 23. The students that did this project were computer sci-
ence students that implemented the algorithm themselves.
They appreciated seeing how modern techniques were being
used on problems from over 100 years ago. [7] [17].

2.5.2 Biological Applications
Reverse-Engineering Biochemical Networks using
Gröbner Fans The project involved a paper by Lauben-
bacher and Stigler which uses Groebner bases to approxi-
mate the most likely dynamic model of regulatory biochem-
ical networks. This project also required learning about
Groebner Fans as it essentially ranked each of the cells in
the fan, returning the cell with the greatest score. This cell
corresponded to the most likely model. [10].

2.5.3 Chemical Applications
Molecular Modeling with Groebner Bases This pair of stu-

dents dealt with determining potential configurations of rings
of carbon atoms, if we assume that all the bond lengths and
bond angles are the same between adjacent atoms. While
there are multiple ways to model these configurations, we’ll
quickly describe the setup the students used for cyclopen-
tane.

Imagine the five carbon atoms in R3, and assume that the
bond lenghts between adjacent atoms is 1. By rotating the
system, we can assume that the five carbon atoms have co-
ordinates (read off in a clockwise direction):

(0, 0, 0), (l, m, 0), (x, y, z), (a, b, c), (1, 0, 0)

The fact that adjacent atoms are distance 1 away from each
other is encoded by polynomials such as

(l)2 + (m)2 − 1 = 0, (x− l)2 + (y −m)2 + (z)2 − 1 = 0, etc.

The students then forced the angle between any two bonds
to be the same by introducing a new variable t and requiring
the distance between two non-adjacent atoms to be t. It
is clear that if the distance between any two carbons that
have one carbon between them is the same, then the angles
formed by any three carbons is also the same. This fact is
encoded by equations such as

(x)2 +(y)2 +(z)2− t = 0, (a− l)2 +(b−m)2 +z2− t = 0, etc.

By computing a Groebner Basis for these equations, and
finding all real solutions to that system, this pair of stu-
dents was able to prove that any ring of five atoms must
be planar. This technically isn’t true for cyclopentane since
hydrogen atoms force one angle to be a bit different from
the rest. However, as a model it was very successful. Af-
ter, cyclopentane, they moved onto cyclohexane and were
able to isolate the “chair” and “boat” isomers for rings of six
carbons. [11] [5].

2.5.4 Economics Applications
Nash Equilibrium and a ‘Very Simple’ Game of Poker This
project worked through an example from Bernd Sturmfels
text Solving Systems of Polynomial Equations. [18]. In the
project, students used Groebner Bases to recover a 1950
game theoretic- result of John Nash concerning the Three
Person Poker Game. The students calculated the Nash Equi-
librium for the game, giving optimal strategies for the play-
ers. [12] [13].

This project was especially exciting for our Computational
Science program as we are working hard to create connec-
tions between computation and some of the social sciences
such as economics. Showing how Groebner Bases can inter-
act with Game Theory and Algebraic Statistics ([14] [16])
may open many new interdiciplinary connections.

2.5.5 Recreational Applications
Solving N-Colorable Graphs with Groebner Bases While

this may seem like a pure math topic, a wide variety of
puzzles can be rephrased in terms of graph colorings, and
those types of problems can be solved using Groebner Bases.
This group solved problems such as Sudokus, Magic Squares,
Latin Squares, Kakuro puzzles, etc.

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 5



We can see how the model is created from a very simple 3×3
Latin Square. This is a 3 × 3 grid, which we want to fill in
with 1’s, 2’s, and 3’s so that no number is repeated in a row
or column. We start by labeling our entries with variables.

a b c
d e f
g h i

Our model will consist of two types of equations. Domain
equations encode the fact that every entry must be 1, 2 or
3. They look like

(a− 1)(a− 2)(a− 3) = 0, (b− 1)(b− 2)(b− 3) = 0, etc.

It is clear that these polynomials will vanish exactly when
the variables are in the desired domain. Distinctness equa-
tions encode that no entry may be repeated. These are en-
coded by introducing a “dummy” variable (we use x, y and
z here). The equations that force the first row to all be
distinct look like

(a− b)x = 1, (b− c)y = 1, (a− c)z = 1

This is done for every row and column. Notice that these
equations will only have solutions if the entries are unequal.
Otherwise, we get an equation of 0 = 1.

After creating a system of all these equations, a Groebner
Basis is calculated from it. At this point, there are tech-
niques to count the number of solutions to the system, which
in turn gives the number of 3× 3 latin squares [3] [1].

Marshall Zarecky, one of the members of this group, used
these techniques and published a paper in the Proceedings
of the Midstates Conference on Undergraduate Research in
Computer Science and Mathematics (2008). He used Groeb-
ner Bases to find all the solutions to an old Milton Bradley
game “Drive Ya Nuts” and solved Cipra’s Puzzle. [19]. An-
other student that was not in the class but worked on a
summer reserach project with me, published a paper after
writing a Mathematical Program that used Groebner Bases
to solve Ken Ken Puzzles. [9].

3. BENEFITS AND CHALLENGES
Free response questionnaires were given after each test. Upon
the completion of the course, two exit evaluations were also
administered. One was a Quantitative Course Evaluation
sheet, while the other was an open response writing (quali-
tative) evaluation. What follows is taken from these end of
the year evaluations. This isn’t intended as a scientific as-
sessment of the learning in the course, but rather as a metric
of student experience.

3.1 Challenges
Since the prerequisites were set at such a low level, there
was a wide variety of abilities in the class. The course had
Seniors, Juniors, Sophomores and one advanced High school
student (not to mention the one mathematics faculty mem-
ber who was auditing). This can be a huge challenge for
any class. However, since few students had even heard of
an ideal, and no student had ever heard of a Groebner Ba-
sis or Buchberger’s Algorithm, this mitigated much of the
difference in mathematical experience.

There were also large differences in the interests of the stu-
dents (as illustrated by the wide variety of projects). It could
have been a problem to try to satisfy the chemists, the ed-
ucators, the computer science majors, and mathematicians
that were in class. Luckily, this technique has such broad
applications, everyone was able to find a project that per-
tained to their interests.

Almost universally, people felt that this class was hard and
required a lot of work, which certainly is true. Of the 11
qualitative responses n = 9 students commented the course
was hard. This was also see on the 13 quantitative responses
where n = 12 said that the material was either “more” or
“much more” difficult than other courses and n = 11 said
they worked harder on this course than their others. I agree
that the course was challenging and therefore I needed to
overcome some frustrations on the part of the students.

3.2 Benefits
It may appear with so many students finding the course
difficult, that they would dislike it. Quite the opposite was
true. While there were two students that appeared to be dis-
satisfied by the course, by far most students ranked it as an
excellent course and enjoyed the material. On the 13 quanti-
tative responses n = 9 ranked the course at excellent, n = 10
thought the course “demonstrated the importance and sig-
nificance of the subject matter”, and n = 13 responded that
the course frequently “introduced stimulating ideas about
the subject.”

On the qualitative responses, students enjoyed learning“new”
and “modern” mathematics (n = 5) and found the projects
valuable (n = 3). All students that filled out a qualita-
tive evaluation would recommend the course to their peers
(n = 11).

Often “computation” in the context of Computational Sci-
ence refers to numerical methods. Certainly at Wittenberg,
students would have much exposure to numerical computa-
tional techniques. This class had the benefit of including
both numerical and symbolic computation. This may have
been the students’ first experience with symbolic computa-
tion as it related to computational science.

3.2.1 Module For General Computational Science
Students

After the success of this course, the author created a Math-
ematica notebook to serve as a short module for our Com-
putational Models and Methods class. As mentioned above,
this course serves as our Introduction to Computational Sci-
ence. Obviously the module didn’t go into the depth that
the course did, but it did explain how the algorithm can be
used to solve many of the mathematical models that are al-
ready studied in that course. In the module, Groebner Bases
are used to find max/mins using Lagrange Multipliers, solve
equilibrium solutions of linear differential equations, project
onto a subspace for computer graphics, and solve linear pro-
gramming problems, which are all topics covered elsewhere
in the course. This notebook, entitled “A Groebner Basis
Module for Comp 260” can be viewed at CSERD at [15].

We feel that this is a particularly important algorithm to

Volume 1, Issue 1 Journal Of Computational Science Education

6 ISSN 2153-4136 December 2010



highlight since many automated commands in computational
software (for example Solve and NSolve in Mathematica)
utilize Buchberger’s algorithm when called. Showing them
how to use Groebner Bases explicitly makes the program
less of a “black box”. This module is currently being used in
the course.

4. CONCLUSIONS
An undergraduate course in Computational Algebraic Ge-
ometry, while novel and somewhat challenging, has many
benefits.

At the end of the course, each student had the ability to:

• algebraically find the common solutions to an arbitrary
number of polynomials in an arbitrary number of de-
grees {f1, . . . , fr}.

• determine if another polynomial g could be written as
a combination of those fi.

• understanding how these algebraic relationships affected
the corresponding plots and geometry. In particular
they could determine equations for the union, inter-
section, and projection of geometric objects given by
the zeros of polynomials. They could also find singular
points of these objects.

• use these techniques to solve optimization, linear pro-
gramming, equilibrium, etc. problems.

• construct polynomial mathematical models of a variety
of types, and solve them using this technique.

In short, it allows for an in depth study of an extremely
useful algorithm with applications to almost every natural
science. It permits students to walk the line between theo-
retical mathematics and computational science and see how
they each benefited the other. Most importantly, it has an
extremely wide variety of applications which students find
very appealing.

5. ACKNOWLEDGEMENTS
This work was partially supported by the federal grant for
enhancement of computational science at Wittenberg Uni-
versity and by Wittenberg University itself. I would like to
thank Prof. Al Stickney for his helpful suggestions in teach-
ing this course. In addition, I thank Prof. Emeritus Jim
Noyes, Dr. Ray Dudek, and the referees for their sugges-
tions that improved this manuscript.

6. REFERENCES
[1] Adams, W. Loustaunau, P.: An introduction to

Gröbner Bases. Graduate Studies in Mathematics. 3,
Amer.Math.Soc. Providence, RI (1994)

[2] AScribe Newswire: ACM Honors Innovator of
Automated Tools for Mathematics; Bruno Buchberger
Developed Algorithm Used in Computer Algebra to
Solve Problems in Computer Science, Engineering,
Science. http://www.ascribe.org/
cgi-bin/behold.pl?ascribeid=20080513.091858&

time=11%252 (May 13, 2008).

[3] Cox, D.: A Groebner Basis Tutorial.
http://www.cs.amherst.edu/~dac/lectures

/gb2.handout.pdf 31-50 (2007)

[4] Cox, D., Little, J. O’Shea, D.: Ideals, Varieties, and
Algorithms - An Introduction to Computational
Algebraic Geometry and Commutative Algebra.
Springer (2000)

[5] Emiris, I.Z. Mourrain, B.: Computer Algebra Methods
for Studying and Computing Molecular
Conformations. Algorithmica. 25 , 372-402 (1999)

[6] Evans, G.A.: Noncommutative Involutive Basis. Ph.D.
Thesis - University of Wales.
http://arxiv.org/PS_cache/math/pdf/

0602/0602140v1.pdf, (2005)

[7] Frobby - A software package for computing Frobenius
numbers and irreducible decompostions of monomial
ideals. http://www.broune.com/frobby (2006)

[8] Fukada, K. Jensen, A. N., Lauritzen, N. Thomas, R.:
The Generic Gröbner walk. J. Symbolic Comput. 42,
298-312 (2007)

[9] Griffith, A. Parker, A.: A Groebner Basis Approach to
Number Puzzles. In: Proceedings of the Sixth Annual
MCURCSM Conference 2009, pp 57-64 (2009)

[10] Laubenbacher,R. Stigler, B.: A computational algebra
approach to the reverse engineering of gene regulatory
networks. J. Theoret. Biol. 229, 523-537 (2004)

[11] Michelucci, D. Foufou, S.: Using Cayley-Menger
Determinants for Geometric Constraint Solving. In:
ACM Symposium on Solid Modeling and Application,
pp. 285-290 (2004)

[12] Nash, J.:, Non-cooperative games. Annals of Math. 54,
286-295 (1951)

[13] Nash, J. and Shapley, L.: A simple three-person poker
game. In: Contributions to the Theory of Games, pp.
105-115. Princeton University Press, Princeton, NJ
(1950)

[14] Pachter, L. and Sturmfels, B.: Algebraic Statistics For
Computational Biology. Cambridge University Press.
New York (2005)

[15] Parker, A.: A Groebner Basis Module for Comp 260”.
The Computational Science Education Reference Desk
(CSERD).
http://www.shodor.org/refdesk/Catalog/, (2010)

[16] Pistone, G., Ticcomagno, E., and Wynn, H.P.:
Algebraic Statistics - Computational Commutative
Algebra in Statistics. Monographs on Statistics and
Applied Probability. 89, Chapman & Hall (2001)

[17] Roune, B.H.: Solving Thousand Digit Frobenius
Problems Using Groebner Bases. J. Symbolic Comput.
43, 1-7 (2008)

[18] Sturmfels, B.: Solving Systems of Polynomial
Equations. CBMS Regional Conferences Series. 97,
Amer.Math.Soc. Providence, RI (2002)

[19] Zarecky, M. Parker, A.: Describing A Combinatorics
Problem with a System of Polynomial Equations. In:
Proceedings of the Fifth Annual MCURCSM
Conference 2008, pp. 101-109 (2008)

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 7




