
Introduction to Michaelis-Menton Kinetics

Enzymes are simply proteins that behave as catalysts in chemical reactions. In particular, they speed up
reactions and reduce the amount of energy needed for the reaction. Enzymes help in the initial phase of
the reaction and control the rate of the reaction by binding the substrate to the active site (receptor) of the
enzyme. The substrate (the particular substance with which the enzyme will bind), S, and the enzyme, E,
combine to the form the enzyme-substrate complex, C, which can break down into S and E or proceed to
produce the product P and E. The following chemical equation characterizes this process:

S + E
k1

⇀↽
k−1

C
k2

→ P + E (1)

The constants k1, k−1, and k2 in (1) are the rates at which the particular components of the reaction occur.
The law of mass action states that the rate of interaction between two chemicals is proportional to the
product of the concentrations of the two molecules. This law allows us to restate the chemical equation
(1) as a system of ordinary differential equations. The underlying functions in this system of differential
equations will be the concentrations of the four chemicals, which are denoted by corresponding lower-case
letters. The variable t will denote the amount of time elapsed since the reaction began. We denote the initial
concentrations of the substrate and enzyme by s0 and e0, respectively. The initial concentrations c0 of C
and p0 of P are both zero. We will not specify particular time units.

The system of differential equations can then be written as:

ds

dt
= k−1c− k1se (2)

de

dt
= k−1c + k2c− k1se (3)

dc

dt
= k1se− k−1c− k2c (4)

dp

dt
= k2c (5)

We will now utilize an important observation and an special assumption to reduce this system of equation
to the famous Michaelis-Menton equation [3]:

dp

dt
=

vms

Km + s
, (6)

where vm is the saturation constant, and Km is the Michaelis constant. The Michaelis-Menton equation
relates the concentration of the substrate to the rate of change of the concentration of the product. (The
physical meaning of the two constants will be explained later in this introduction.) To derive equation (6),
we first observe that the quantity e(t) + c(t) is constant throughout the reaction, and we say that e(t) + c(t)
is a conserved quantity. Mathematically, this is characterized by noting that the rate of change of e(t) + c(t)
with respect to time is zero. To see this, we add equations (3) and (4) and see that

d(e + c)
dt

=
de

dt
+

dc

dt
(7)

= (k−1c + k2c− k1se) + (k1se− k−1c− k2c) (8)
= 0. (9)

Recalling that c0 = 0, we observe that for t ≥ 0,
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e(t) + c(t) = e(0) + c(0) (10)
= e0 + c0 (11)
= e0. (12)

In particular e(t) = e0− c(t), for t ≥ 0. It follows from (9) that dc/dt = −de/dt, and hence we can eliminate
equation (4) from the system. (Substituting dc/dt = −de/dt into equation (4) reveals that equations (3)
and (4) are equivalent.) To further simplify the system, we use the quasi-steady state assumption due to
Briggs and Haldane [1]. Biologically, we explain this assumption in the following manner. Assume that
the concentration of small substrate molecules is much greater the concentration of the enzyme. Because
of the high concentration of S, as soon as a molecule of the enzyme-substrate complex breaks down, a new
substrate molecule will bind to the newly available enzyme-binding site. In this scenario, the enzymes are
working at a maximal capacity. Ignoring the beginning and end of the reaction, we can therefore assume
that the concentration of the enzyme-substrate complex, c, essentially remains at a nonzero constant level.
(The facts that the concentration c is zero at the beginning and end of the reaction and is not necessarily
precisely constant throughout the reaction suggests the use of the prefix “quasi-” for this quasi-steady state
assumption.) To further simplify the calculations, we invoke the quasi-steady state assumption and set

dc

dt
= 0. (13)

From equation (4), it now follows that

k1se− k−1c− k2c = 0, (14)

which we rewrite as

se

c
=

k−1 + k2

k1
. (15)

The Michaelis constant, Km, is defined by

Km =
k−1 + k1

k1
. (16)

Using equation (12) to substitute e0 − c for e in this last equation and then solving for c, we obtain

c =
e0s

Km + s
. (17)

We can now combine equation (17) with equation (5) to obtain

dp

dt
=

k2e0s

Km + s
. (18)

Under the quasi-steady state assumption, all of the enzyme is assumed to be complexed with the substrate so
that e = 0, and hence c = e0. We can conclude that the production rate of P , dp/dt, is maximal when c = e0.
Moreover, equation (18) gives the production rate, dp/dt, as a function of the substrate concentration, s.
From equation (18), we can conclude that for large values s (which are in particular much larger than the
initial concentration, e0 of the enzyme E), dp/dt ≈ k2e0 and that the graph of dp/dt versus s approaches
the horizontal asymptote dp/dt = k2e0. We can think of the quantity k2e0 as the maximal rate of change of
the reaction. We set vm = k2e0 and call it the saturation constant. (This name is due to the fact that the
reaction proceeds at this rate when all of the enzyme is complexed with the substrate.) We then can rewrite
the Michaelis-Menton equation in its usual form:

dp

dt
=

vms

Km + s
. (19)
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The Michaelis constant, Km, has a physical meaning. If s = Km, it follows that dp/dt = vm/2. For this
reason, Km is also called the half-saturation constant. We can similarly derive the following expression for
ds/dt, which is another formulation of the Michaelis-Menton equation:

−ds

dt
=

vms

Km + s
. (20)

The advantage of using equation (20) over equation (19) is that rate of the reaction is simply expressed
in term of the concentration of the substrate rather than the concentrations of both the product and the
substrate.
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