Shared Memory Interface

-
e - :

Tom Murphy

Director of Contra Costa College
High Performance Computing Center

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 1



\ Preliminaries

What is OpenMP?

= Enables shared memory parallelism

s Consists of
= Compiler directives
= Functions
= Environment variables
= Requires a supportive compiler

= C, C++, and Fortran
= Are the languages of OpenMP
= We will be using C

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 2



=g Preliminaries

which version are we using?

= OpenMP 2.5
= Gce 4.2 (May 2007) supports OpenMP 2.5
= When Gcc 4.4 releases it will support 3.0

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ g



=g Preliminaries

How do we use It?

= TO setup to run the compiler

= alias ompcc='icc -openmp -openmp-report2’
= YOU can now use ‘ompcc’

= In place of ‘icc’ or ‘gec’

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 4



29 Seq uential Hello world

the code of “hello.c”

#include <stdio.h>
iInt main () {

[[#pragma omp parallel
Il

printf("Hello World\n");
I}

return O;

}

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 5




\ Sequential Hello world

starting at the beginning Is

= icc hello.c P

= ./a.out
= No surprises

= ompcc hello.c
= What do you expect?

= Uncomment comments: expecting?
= icc hello.c
= ompcc hello.c

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 6



A Simplest OpenMP
(e EXample?

the code of “for.c”

#include <omp.h>
#include <stdio.h>
int main () {
int I
#pragma omp parallel for
for(i=0; i<10; ++i) {
printf("i=%d\n", 1);
}

return O;

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 7



zgh SImplest OpenMP example?

parallelizing a for loop

= Run the command “ompcc for.c”
= Run the command “icc for.c”
= OPENMP should be defined

= Split printf into two lines
printf("I=");
printf(“%d\n", 1);

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 8



\ Sharing Is not always good

the code of “ranksize.c”

#include <omp.h>
#include <stdio.h>
#define WORKLOAD 1
int main () {
int rank, size, i;
#pragma omp parallel
{
rank = omp_get_thread num();
for(i=1; i<KWORKLOAD; ++i);
printf("Hello World from thread %d\n", rank);
if (rank ==0){
size = omp_get _num_threads();
printf("There are %d threads\n",size);

}
}

return O;

}

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 9



\ Sharing Is not always good

lots of key things happen now

= Run “icc ranksize.c”
= Can _OpenMP still help?

= ompcc ranksize.c

= Run it several times
= Change WORKLOAD to be 1000000

= We need a separate copy of rank in each thread
= Add “private(rank)” clause to pragma “parallel “

= Why didn’t the variable “I” in “for.c” fail us?
= Are we done?

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 10



=) HOW tO measure success?

Lower wallclock or efficient CPU

: use?
= Wall clock is easy to measure

= It's what the user cares about

s CPU use Is harder to measure
= It's what the data center cares about
= Profiling tools exist, and are important

= Close enough is also success
= Human time is also valuable

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ i1



) IU's all about timing

/ :FC;

the code of “timing.c”

#include <omp.h>

#include <stdio.h>

#define WORKLOAD 1

#define MAXDIM 10

int main () {
int i, wi;
double a[]MAXDIM], b[MAXDIM], c[MAXDIM];
for(i=0;i<MAXDIM;++i) a[i]=b[i]=c[i]=i;

#pragma omp parallel for private(wl)
for(i=0;i<MAXDIM;++i) {
for(wl=0;wl<WORKLOAD;++wl) c[i] *= a[i}/b[i];

}
for(i=0;i<MAXDIM;++i) printf("%d:\t%f\n", i, c[i]);
return O;
}
(11U/ZUU

9 http://contracosta.edu/hpc/resources/presentations/ 12



) IU's all about timing

can see effect of parallelization

- . overhead
= “time ./a.out” gives overall wallclock time

= double omp_get wtime(void)
= Gives more fine grained control

= Requires some code changes to use it
= Split “parallel for” into two pragmas
= Create variable “deltaT” in scalar part
= Calculate deltaT at top and bottom
= Do areduction on “deltaT”

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 13



\ It’s all about timing

ittle more detall on the changes

= Split “parallel for” into two pragmas
= #pragma omp parallel
= #pragma omp for private(wl)

= Create variable “deltaT” in scalar part
= double deltaT,;

= Calculate deltaT at top and bottom
= deltaT =omp_get_wtime();
= deltaT = omp_get wtime() - deltaT;

= Do areduction on “deltaT” (first pragma)
= #pragma omp parallel reduction(+:deltaT)

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 14



\ All about reductions

lots of possibilities

= Specify operator and a list of variables
= Can have more than one clause, as needed
= Private copy made, initialized relative to operator

= Operator Initial value
+ 0
- 0
* i
& =0
| 0
&& 1
| 0

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 15



zg Simplest revisited

exploring for.c and timing changes

= Printf in two pieces didn’t print together

= This Is critical - add the right pragma
pragma omp critical (printTest)

{
printf("i=");
printf("%d\n", 1);

}

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 16



\ Simplest revisited

but they are still out of order

= Let’s force iterations to be in sequence
= Add “ordered” as clause on “parallel for”

= Use timing calls to understand
= before and after costs of being ordered

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 17



\ timing loop revisited

we can control scheduling

= Four possible for clauses
= Schedule(static, iterations/numthreads)
= Schedule(dynamic, 1)
= Schedule(guided, 1)
= Schedule(runtime)
= OMP_SCHEDULE envar
= OpenMP 3.0 gives better runtime control
= Modify timing.c and time differences
= Make work loop go to *"WORKLOAD
= Make work loop go to (MAXDIM-I)*WORKLOAD

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 18



\ Additional experiments

to run In your copious spare time

= OMP_NUM THREADS
= Allows you to set the number of threads to use
= Void omp_set _num_threads(integer)
= Integer omp_get_num_threads|()

= Create a temporary array
= make it bigger and/or more threads
= When do things destabilize?

= How can you know?
=« OMP_STACKSIZE comes with OpenMP 3.0

71T07200
9 http://contracosta.edu/hpc/resources/presentations/ 19



