
OpenMPp
Shared Memory Interface

Tom Murphy

Director of Contra Costa College
High Performance Computing Center

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 1

High Performance Computing Center

Preliminaries
What is OpenMP?

Enables shared memory parallelism
Consists of

Compiler directives
Functions
E i t i blEnvironment variables

Requires a supportive compiler
C C++ and FortranC, C++, and Fortran

Are the languages of OpenMP
We will be using C

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 2

g

Preliminaries
which version are we using?

OpenMP 2.5
Gcc 4 2 (May 2007) supports OpenMP 2 5Gcc 4.2 (May 2007) supports OpenMP 2.5
When Gcc 4.4 releases it will support 3.0

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 3

Preliminaries
How do we use it?

To setup to run the compiler
alias ompcc='icc -openmp -openmp-report2’alias ompcc= icc -openmp -openmp-report2

You can now use ‘ompcc’
I l f ‘i ’ ‘ ’In place of ‘icc’ or ‘gcc’

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 4

Sequential Hello worldq
the code of “hello.c”

#include <stdio.h>
int main () {() {

//#pragma omp parallel
//{
printf("Hello World!\n");
//}
return 0;

}

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 5

Sequential Hello worldq
starting at the beginning is

i t tiicc hello.c
./a.out

interesting

No surprises
ompcc hello.c

What do you expect?
Uncomment comments: expecting?

icc hello.c
ompcc hello.c

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 6

Simplest OpenMP
example?example?

the code of “for.c”
#include <omp.h>
#include <stdio.h>
i t i () {int main () {

int i;
#pragma omp parallel for
for(i=0; i<10; ++i) {

printf("i=%d\n", i);
}}
return 0;

}

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 7

Simplest OpenMP example?p p p
parallelizing a for loop

Run the command “ompcc for.c”
Run the command “icc for c”Run the command icc for.c
_OPENMP should be defined
Split printf into two lines
printf("i=“);
printf(“%d\n", i);

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 8

Sharing is not always goodg y g

#include <omp h>
the code of “ranksize.c”

#include <omp.h>
#include <stdio.h>
#define WORKLOAD 1
int main () {

i t k i iint rank, size, i;
#pragma omp parallel
{

rank = omp_get_thread_num();
f (i 1 i WORKLOAD i)for(i=1; i<WORKLOAD; ++i);
printf("Hello World from thread %d\n", rank);
if (rank == 0) {

size = omp_get_num_threads();
printf("There are %d threads\n",size);

}
}
return 0;

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 9

}

Sharing is not always goodg y g
lots of key things happen now

Run “icc ranksize.c”
Can _OpenMP still help?

ompcc ranksize.c
Run it several times
Change WORKLOAD to be 1000000Change WORKLOAD to be 1000000

We need a separate copy of rank in each thread
Add “private(rank)” clause to pragma “parallel “
Why didn’t the variable “I” in “for.c” fail us?
Are we done?

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 10

How to measure success?
Lower wallclock or efficient CPU

?
Wall clock is easy to measure

It’s what the user cares about

use?

It s what the user cares about
CPU use is harder to measure

It’ h t th d t t b tIt’s what the data center cares about
Profiling tools exist, and are important

Close enough is also success
Human time is also valuable

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 11

It’s all about timingg

#include <omp h>
the code of “timing.c”

#include <omp.h>
#include <stdio.h>
#define WORKLOAD 1
#define MAXDIM 10
int main () {

int i, wl;
double a[MAXDIM], b[MAXDIM], c[MAXDIM];
for(i=0;i<MAXDIM;++i) a[i]=b[i]=c[i]=i;for(i 0;i MAXDIM; i) a[i] b[i] c[i] i;

#pragma omp parallel for private(wl)
for(i=0;i<MAXDIM;++i) {

for(wl=0;wl<WORKLOAD;++wl) c[i] *= a[i]/b[i];
}}
for(i=0;i<MAXDIM;++i) printf("%d:\t%f\n", i, c[i]);
return 0;

}

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 12

It’s all about timingg
can see effect of parallelization

h d“time ./a.out” gives overall wallclock time
double omp_get_wtime(void)

overhead

Gives more fine grained control

Requires some code changes to use it
Split “parallel for” into two pragmasSplit parallel for into two pragmas
Create variable “deltaT” in scalar part
Calculate deltaT at top and bottom
Do a reduction on “deltaT”

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 13

It’s all about timingg
little more detail on the changes

Split “parallel for” into two pragmas
#pragma omp parallel
#pragma omp for private(wl)

Create variable “deltaT” in scalar part
double deltaT;double deltaT;

Calculate deltaT at top and bottom
deltaT = omp_get_wtime();
deltaT = omp_get_wtime() - deltaT;

Do a reduction on “deltaT” (first pragma)
#pragma omp parallel reduction(+:deltaT)

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 14

#pragma omp parallel reduction(+:deltaT)

All about reductions
lots of possibilities

Specify operator and a list of variables
Can have more than one clause, as needed
Private copy made initialized relative to operatorPrivate copy made, initialized relative to operator

Operator initial value
+ 0
- 0
* 1
& ~0
| 0
&& 1
|| 0

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 15

|| 0

Simplest revisitedp
exploring for.c and timing changes

Printf in two pieces didn’t print together
This is critical - add the right pragmaThis is critical add the right pragma
pragma omp critical (printTest)
{

printf("i=“);
printf("%d\n", i);

}

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 16

Simplest revisitedp
but they are still out of order

Let’s force iterations to be in sequence
Add “ordered” as clause on “parallel for”Add ordered as clause on parallel for
Use timing calls to understand

before and after costs of being orderedbefore and after costs of being ordered

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 17

timing loop revisitedg p
we can control scheduling

Four possible for clauses
schedule(static, iterations/numthreads)
schedule(dynamic 1)schedule(dynamic, 1)
schedule(guided, 1)
schedule(runtime)

OMP SCHEDULE envarOMP_SCHEDULE envar
OpenMP 3.0 gives better runtime control

Modify timing.c and time differences
M k k l t i*WORKLOADMake work loop go to i*WORKLOAD
Make work loop go to (MAXDIM-I)*WORKLOAD

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 18

Additional experimentsp
to run in your copious spare time

OMP_NUM_THREADS
Allows you to set the number of threads to use

void omp_set_num_threads(integer)
Integer omp_get_num_threads()

C t tCreate a temporary array
make it bigger and/or more threads
When do things destabilize?When do things destabilize?
How can you know?
OMP_STACKSIZE comes with OpenMP 3.0

7/10/200
9 http://contracosta.edu/hpc/resources/presentations/ 19

