
Introduction to Parallelism and SMP

Andrew Fitz Gibbon

Undergraduate Petascale Education Program

May 24, 2010

1



Outline

• Parallelism and its Jargon

• Instruction Level Parallelism

– Looping

– Pipelining

– Vectorizing

• SMP and threading

2



Parallelism!

• Doing multiple things at the same time with

multiple execution units in order to solve a

problem or parts of a problem.

• “Execution unit” something that does something

• Shared Memory: multi-threading

• Distributed Memory: multi-processing

• Parallelism: Concurrency

• Some of these are used interchangeably

• Instructions, cycles, clocks, pipelines

3



Instruction Level Parallelism

• The set of techniques for executing multiple

things simultaneously inside a CPU core.

– ILP is lower level than multi-core!

• This helps solve a problem:

– With tons of circuitry in a core, much of it

might be idle. Wasteful!

– So... use some of it to execute different parts

of the program at the same time

4



DON’T PANIC!

5



How do we do it?

• Well... we don’t really.

– The compiler and the CPU take care of a lot of

it for us.

– Compilers usually know more than we do.

• But we need to be careful

6



ILP Flavors

• Superscalar: Doing multiple operations at the
same time.

• Pipeline: Doing multiple stages of a complex
operation at the same time on different pieces of
data. Imagine an assembly line.

• Superpipeline: Multiple pipelines happening
simultaneously.

• Vector: Doing the same thing to a bunch of
things simultaneously.

7



– AltiVec: Specific case of Vector processing



Why do we need to be careful?

You won’t get much benefit from ILP if:

• Your code is too complicated

• Loops happen in random orders

• Branches, statements depend on too many other

parts

8



Moving up

So if the compiler and CPU do a lot of the heavy

work, what can we do?

• Enter SMP, multi-core, and the programming that

goes with it

• SMP? Cores? Sockets? Processors? ALUs?

TLAs? Dies? Chips? Threads? Processes?

Don’t Panic

9



SMP

Symmetric Multi-Processing

• Multiple cores controlled by one OS, all with

access to the same memory

• All memory is not necessarily created equal

– NUMA: Non-Uniform Memory Access

• “Multi-core” and “SMP” often used

interchangeably

10



Processes and threads

• Process:

– A construct in the OS/system for a running program

– Contains everything needed to run a program

– Code, data, meta-data, control data

• Thread:

– Similar to Processes; contains code, control-data

– Single Processes can have multiple threads

– With multiple threads, all share the process’s data

11


