OpenMP

OpenMP C/C++ Version 1.0: Syntax-Summary

OpenMP

OpenMP isan industry-standard API for programming shared memory computers. Itisbased ona
fork/join programming model in which a program with a single thread of execution (the master thread)
spawns a team of threadsto carry out work concurrently.

Thisnoteisa brief summary of the OpenMP C/C++ version 1.0 Application Program Interface. To
learn more about OpenMP and how to useit, consult the OpenM P web site at www.openmp.org.

Directive format
#pr agma omp directive-name [clause[clause]...]

The directive appliesto at most one succeeding statement which must be a structured block. A
structured block isablock of one or more statements with a single point of entry at thetop and asingle
exit at the bottom. Branchesinto or out of a structure block are not permitted. It isallowed to have an
exit() statement within a structured block.

Conditional compilation with the OpenMP macro

Conditional compilation is specified with the stlandard C/C++ preprocessor and the _ OPENMFPnacro:
#ifdef _OPENMP

any legal C/C++ constructs
#endif

The macro must not be the subject of a#define or an #undef .

Parallel region construct
#pragma omp parallel [
structured-block

cl ause[clause]...]

if (scalar-expression)
private(list)
firstprivate(list)

default (shared | none)
shared(list)

copyin(list)
reduction(operator: list)

Wherecl auseis

Usage Note:
When theif-clause is present, the code within the parallel region is only executed with multiple

threads if the scalar-expression evaluatesto anon-zero value. If it evaluatesto zero the code
within the parallel regionisserialized; i.e. it is executed by a team of szeone.

Restrictions

. At most oneif clause can appear on the directive.

. It is unspecified whether any side-effectsinsde the if expression occeur.

. A throw in C++ from a parallel region must not cross a structured block, and it must be caught
by the same thread that threw the exception.

. Thereisanimplied barrier at the end of a paralld region.

Work-sharing Constructs

Work-sharing constructs and the barrier directive must be encountered in the same order by all
threadsin ateam. They must be encountered by all threadsina team or noneat all.

Thereisan implied barrier and the end of a work-sharing construct unlessanowait clauseis
specified in which case the threads immediately continue execution.

for construct

#pragma omp for [cl ause[clause] ...]

for-loop

private(list)
firstprivate(list)
reduction(operator: list)
ordered
schedule(kind[, chunk_size])
nowait
lastprivate(list)

Wherecl auseis

Usage Note:

Thefor loop must have the standard form
for(init-expr; var logical-op b; incr-expr)

where

. init-expr isasimple assignment to an integer type.

. var isasigned integer variable. It isimplicitly made privateif it has not been explicitly made
private by the programmer. Thisvariable must not be modified within the loop.

. Logical-op mus beoneof <, <=, >, or >=

. Incr-expr must a decrement or increment op applied to var , or asimple
increment/decrement assignment operation with aloop invariant integer expression.

. Ib ,bandincr areloopinvariant integer expressions. No synchronization takes place during
the evaluation of these expressions and any side effects produce indeterminate results.

Theordered clausetelsthe compiler to expect an ordered directive in the body of the for

loop. Theschedule clause defines how the iterations are mapped onto the team of threads:

. schedule(static[, chunk_size]): iterations are divided into chunks of size
chunk_size and assigned to the members of the team in around robin fashion. If
chunk_size it given, approximately equal sized chunks are assigned oneto each
thread.

. schedule(dynamic[, chunk_size]): iterations are divided into chunks of size
chunk_size and assigned one-by-one to the threads as they finish the previous chunk of
iterations. When no chunk_size isgiven, it defaultsto 1.

. schedule(guided], chunk_size]): iterations are assigned to threads as with
the dynamic schedule, but the chunks are of decreasing sizes. The number of iterationsin a
chunk start at some large value and decrease down to chunk_size. If
chunk_size equals 1, the size of each chunk is approximately the number of
unassigned iterations divided by the number of threadsin theteam. If chunk_size
isn't gecified, it defaultsto one.

. schedule(runtime): The schedule and chunk size are determined at runtime by
setting the runtime variable OMP_SCHEDULE If thisvariableis not set, the behavior is
implementation dependent.

Restrictions:

. Thef or loop must be a structured block. Its execution can not be terminated by abr eak
statement.

. The values of the loop control expressonsinthef or loop associated withaf or directive must

be the samefor all the threadsin the team.

. Thef or loop iteration variable must have a signed integer type.

. Only asingleschedul e clause can appear onaf or directive.

. Only asingleor der ed clause can appear on af or directive.

. It isunspecified if or how often any side effectswithinthechunk_si ze, | b, b, ori ncr
EXPressions occur.

. Thevalueof thechunk_si ze expresson must be the samefor all threadsin the team.

sections/section construct
#pragma onp sections [clause[clause]..]
#pragma omp section

Wherec/ auseis. private(list)
firstprivate(list)
lastprivate(list)
reduction(operator: list)

Usage Note:

The sections construct is used as follows with a sequence of structured blocks
#pragma omp sections [cl ause[clause]...]

[#pragma omp section]

structured-block
[#pragma omp section

]
}

Restrictions:
. A section directivemust beinsidethe lexical extent of asections directive.

single construct

#pragma omp single [cl ause[clause]...]
Wherec/ auseis. private(list)
firstprivate(list)
nowait

Wherec! auseis if (scalar-expression)
private(list)
firstprivate(list)

default (shared | none)
shared(list)

copyin(list)
schedule(type[, chunk_size])
ordered

nowait

lastprivate(list)
reduction(operator: list)

Usage Note:

The congtruct isthe sameasaparallel construct immediately followed by afor work sharing
condruct.

Restrictions:

This congtruct sharesrestrictions with the parallel and for constructs.

parallel sections construct
#pragma omp parallel sections [
#pragma omp section

cl ause[clause]..]]

if (scalar-expression)
private(list)
firstprivate(list)

default (shared | none)
shared(list)

copyin(list)
lastprivate(list)
reduction(operator: list)

Wherecl auseis

Usage Note:
Thisconstruct isthe sameasaparallel construct followed by asections directive.

Restrictions:
This construct sharesredtrictionswith the parallel and sections constructs.

Combined Parallel Work-sharing Constructs

parallel for construct
#pragma omp parallel for [
for-loop

cl ause[clause]..]]

Master and Synchronization Constructs

master construct
#pragma omp master

atomic construct
#pragma onp atonic
expression-stnt

Usage Note:

Theat oni ¢ construct issemantically equivalenttocri ti cal statement. The single satement
expr essi on- st mt must use one of the following forms:
#pragma onp atonic
X binop = expr or x++ or ++x or Xx-- or --X

Where X isan lvalue expression of scalar type and no side effects.
expr isanlvalue expresson with no sde effects. It must not
reference x.
bi nop isnotoverloaded andisoneof +, *, -, /, & ",
<<, >>,

Restriction

All atomic references to the storage location x throughout the program are required to have a
compatible type.

barrier construct
#pragme onp barrier

Restrictions:

The smallest statement that containsabar ri er directive must be ablock (or acompound
statement).

critical construct
#pragma onmp critical [(nane)]

Where nane is. An identifier

flush construct
#pragma onp flush [(/ist)]
Where I'i st isacomma-separated list of variablesthat need to be flushed
A fl ush isimplied by the following constructs:
. barrier
. Atentry toand exitfromcri ti cal
. Atentry to and exit from or der ed
. Attheexit fromparal | el .
. Atexit fromf or
. Atexitfromsecti ons
. Atexitfromsi ngl e

Restriction
A variable specifiedin af | ush must not have a reference type.

ordered construct
#pragmae onp ordered

Restrictions:

. Anor der ed directive can only appear in the dynamic extent of af or directive that hasthe
or der ed clause specified.

. Aniteration of aloop withaf or construct must not execute the same or der ed directive more
than once, and it must not execute more than one or der ed directive.

Data Environment Constructs and Clauses

threadprivate construct
#pragma onp threadprivate(list)

Where |'i st isacomma separated list of variablesthat do not have an
incomplete type.

Restrictions

. At hreadpri vat e variable must not appear in any clause other than the copyi n, schedule,
or theif clause. A default clause does not effect at hr eadpri vat e variable.

. Theaddressof at hr eadpri vat e variableisnot an address constant.

. At hreadpri vat e variable must not have a reference type.

. At hreadpri vat e variable with class type must have an accessible, unambiguous default
constructor.

copyin clause

copyin (list)
wherel i st containst hr eadpri vat e variables.
Restrictions:

. A variablethat is specified inacopyi n clause must have an accessible, unambiguous copy
ass gnment operator.

default clause

def aul t (shared | none)

Restrictions:
. Only asingledef aul t clause may be specifiedonapar al | el directive.

firstprivate clause
firstprivate(list)

Restrictions:

. All restrictionson pr i vat e apply except for the restriction on const -qualified types.
. A variablewith a classtypethat is specified f i r st pri vat e must have an accessble
unambiguous copy constructor.

lastprivate clause

lastprivate(list)

Restrictions:

. All regtrictionson pr i vat e apply.
. A variablethat is specified as| ast pri vat e must have an accessible, unambiguous copy
assignment operator.

private clause
private(list)

Restrictions:

. A variablewith a classtypethat is specified aspr i vat e must have an accessible, unambiguous
default constructor.

. Unlessit has a class type with a mutable member, a variable specified aspr i vat e must not
haveaconst -qualified type.

. A variable specified aspr i vat e must not have an incomplete type or a reference type.

. Variablesthat are specified pri vat e onapar al | el directive cannot be specified pri vat e
again on an enclosed work-sharing or par al | el directive. Asaresult, variablesthat are
specified pr i vat e onawork-sharing or par al | el directive must be specified shar ed in
the enclosing parallel region

reduction clause
reduction (op:list)

Where op is: + Initial value =
Initial value =
- Initial value =
& Initial value = ~0
AN

*

o~ O

Initial value =
Initial value =
&& Initial value =
| Initial value =

o OO

Usage Note:

A reduction istypically used in a statement with one of the following forms:
X = X op expr
X <0p> = expr
X = expr op x (except for subtraction)
X++ Or ++X Or X-- Or --X

whereexpr doesnot reference x.

Restrictions:

. Thetypeof thevariablesinther educt i on clause must bevalid for ther educt i on
oper at or except that pointer types and reference types are never permitted.

. A variablethat is specified inther educt i on clause must not be const -qualified.

. A variablethat is specified inther educt i on clause must beshar ed inthe enclosing parallel
region.

shared clause
shared(list)

Directive binding

An OpenMP C/C++ program must adhere to the following rules with respect to directive binding:

. Thef or,sections, singl e,mast er andbarri er directivesbind to the dynamically
enclosng par al | el , if oneexists. If no paralle region is currently being executed, the
directives apply to ateam consisting of the master thread.

. Theor der ed directive binds to the dynamically enclosing f or .

. Theat oni c directive enforces exclusive access with respect to at oni ¢ directivesin all
threads, not just the current team.

. Thecritical directive enforcesexclusive accesswithrespecttocri ti cal directivesinall
threads, not just the current team.

. A directive can never bind to any directive outside the closest enclosing par al | el .

Directive Nesting

An OpenMP C/C++ program must adhere to the following rules with respect to the dynamic nesting of

directives.

. A paral | el directivedynamically insde ancother par al | el logically establishes a new team
which is composed of only the current thread, unless nested parallelism is enabled.

. For,secti ons, andsi ngl e directivesthat bind tothesamepar al | el arenot allowed to
be nested inside each other.

. Critical directiveswith the same name are not allowed to be nested inside each other

. For,secti ons andsi ngl e directivesare not permitted in the dynamic extent of
critical,orderedandmaster regions.

. Bar ri er directivesare not permitted in the dynamic extent of f or , or der ed, sect i ons,
singl e,master andcritical regions.

. Mast er directivesare not permitted in the dynamic extent of f or , sect i ons, andsi ngl e
directives.

. Or der ed directivesare not allowed in thedynamic extent of cri ti cal regions.

. Any directive that is permitted when executed dynamically inside a parallel regionisaso
permitted when executed outside a parallel region.. When executed dynamically outside a user-
specified paralle region, the directive is executed with respect to a team composed of only the
master thread.

Runtime Library Functions

These routines use the include file <omp.h>. Thisfileincludes function prototypes and defines the type
onmp_l ock_t.

Execution environment functions

voi d onp_set_num threads(int numthreads);
int onp_get_numthreads(void);

int onp_get_max_t hreads(void);

int onp_get_thread_numvoid);

int onp_get_num procs(void);

int onp_in_parallel(void);

voi d onp_set _dynami c(i nt dynamn c_t hreads);
int onp_get_dynam c(void);

voi d onp_set_nested(int nested);

int onp_get_nested(void);

Lock functions

voi d onp_init_lock(onp_l ock_t *Iock);
voi d onp_init_nest_| ock(onmp_nest_lock_t *Iock);

voi d onp_destroy_l ock(onp_l ock_t *Iock);
voi d onp_destroy_nest | ock(onmp_nest_lock_t *I|ock);

voi d onp_set _| ock(onmp_l ock_t *Iock);
voi d onp_set_nest_| ock(onmp_nest _|ock_t *Iock);

voi d onp_unset _| ock(onp_l ock_t *| ock);
voi d onp_nuset _nest _| ock(onp_nest | ock_t *Iock);

int onp_test_|ock(onp_lock_ t *I|ock);
int onp_test_nest_lock(onp_nest_|lock_t *Iock);

Environment Variables

OWP_SCHEDULE "schedul e[, chunk_si ze] ™"
OVP_NUM THREADS i nt

OVP_DYNAM C TRUE || FALSE

OVP_NESTED TRUE || FALSE

About this document

This note was written by Tim Mattson of Intel Corporation. It is based on the OpenM P specification
"OpenMP C/C++ Applications Program Interface” version 1.0 dated October 1998.

Please send any comments or correctionsto Tim Mattson at timothy.g.mattson@intel .com.

