
OpenMP is an industry-standard API for programming shared memory computers. It is based on a
fork/join programming model in which a program with a single thread of execution (the master thread)
spawns a team of threads to carry out work concurrently.

This note is a brief summary of the OpenMP C/C++ version 1.0 Application Program Interface. To
learn more about OpenMP and how to use it, consult the OpenMP web site at www.openmp.org.

Directive format
#pragma omp directive-name [clause[clause]…]

The directive applies to at most one succeeding statement which must be a structured block. A
structured block is a block of one or more statements with a single point of entry at the top and a single
exit at the bottom. Branches into or out of a structure block are not permitted. It is allowed to have an
exit() statement within a structured block.

Conditional compilation with the OpenMP macro
Conditional compilation is specified with the standard C/C++ preprocessor and the _OPENMP macro:

#ifdef _OPENMP

any legal C/C++ constructs

#endif

The macro must not be the subject of a #define or an #undef .

Parallel region construct
#pragma omp parallel [clause[clause] …]

structured-block

Where clause is: if (scalar-expression)

private(list)

firstprivate(list)

default (shared | none)

shared(list)

copyin(list)

reduction(operator: list)

 Usage Note:

When the if-clause is present, the code within the parallel region is only executed with multiple
threads if the scalar-expression evaluates to a non-zero value. If it evaluates to zero the code
within the parallel region is serialized; i.e. it is executed by a team of size one.

Restrictions

• At most one if clause can appear on the directive.
• It is unspecified whether any side-effects inside the if expression occur.
• A throw in C++ from a parallel region must not cross a structured block, and it must be caught

by the same thread that threw the exception.
• There is an implied barrier at the end of a parallel region.

 Work-sharing Constructs
Work-sharing constructs and the barrier directive must be encountered in the same order by all
threads in a team. They must be encountered by all threads in a team or none at all.

There is an implied barrier and the end of a work-sharing construct unless a nowait clause is
specified in which case the threads immediately continue execution.

 for construct
 #pragma omp for [clause[clause] …]

 for-loop

 Where clause is: private(list)

 firstprivate(list)

 reduction(operator: list)

 ordered

 schedule(kind[, chunk_size])

 nowait

 lastprivate(list)

 Usage Note:

 The for loop must have the standard form
 for(init-expr; var logical-op b; incr-expr)

 where
• init-expr is a simple assignment to an integer type.
• var is a signed integer variable. It is implicitly made private if it has not been explicitly made

private by the programmer. This variable must not be modified within the loop.
• Logical-op must be one of <, <=, >, or >=
• Incr-expr must a decrement or increment op applied to var , or a simple

increment/decrement assignment operation with a loop invariant integer expression.
• lb , b and incr are loop invariant integer expressions. No synchronization takes place during

the evaluation of these expressions and any side effects produce indeterminate results.
 The ordered clause tells the compiler to expect an ordered directive in the body of the for
loop. The schedule clause defines how the iterations are mapped onto the team of threads:

• schedule(static[, chunk_size]): iterations are divided into chunks of size
chunk_size and assigned to the members of the team in a round robin fashion. If
chunk_size isn’t given, approximately equal sized chunks are assigned one to each
thread.

• schedule(dynamic[, chunk_size]): iterations are divided into chunks of size
chunk_size and assigned one-by-one to the threads as they finish the previous chunk of
iterations. When no chunk_size is given, it defaults to 1.

• schedule(guided[, chunk_size]): iterations are assigned to threads as with
the dynamic schedule, but the chunks are of decreasing sizes. The number of iterations in a
chunk start at some large value and decrease down to chunk_size. If
chunk_size equals 1, the size of each chunk is approximately the number of
unassigned iterations divided by the number of threads in the team. If chunk_size
isn’t specified, it defaults to one.

• schedule(runtime): The schedule and chunk size are determined at runtime by
setting the runtime variable OMP_SCHEDULE. If this variable is not set, the behavior is
implementation dependent.

OpenMP C/C++ Version 1.0: Syntax-Summary

 Restrictions:

• The for loop must be a structured block. Its execution can not be terminated by a break
statement.

• The values of the loop control expressions in the for loop associated with a for directive must
be the same for all the threads in the team.

• The for loop iteration variable must have a signed integer type.
• Only a single schedule clause can appear on a for directive.
• Only a single ordered clause can appear on a for directive.
• It is unspecified if or how often any side effects within the chunk_size, lb, b, or incr

expressions occur.
• The value of the chunk_size expression must be the same for all threads in the team.

 sections/section construct
 #pragma omp sections [clause[clause] …]

 #pragma omp section

 Where clause is: private(list)

 firstprivate(list)

 lastprivate(list)

 reduction(operator: list)

 Usage Note:

 The sections construct is used as follows with a sequence of structured blocks
 #pragma omp sections [clause[clause] …]
 {
 [#pragma omp section]
 structured-block
 [#pragma omp section
 .
 .
]
 }

 Restrictions:

• A section directive must be inside the lexical extent of a sections directive.

 single construct
 #pragma omp single [clause[clause] …]

 Where clause is: private(list)

 firstprivate(list)

 nowait

 Combined Parallel Work-sharing Constructs

 parallel for construct
 #pragma omp parallel for [clause[clause] …]

 for-loop

 Where clause is: if (scalar-expression)

 private(list)

 firstprivate(list)

 default (shared | none)

 shared(list)

 copyin(list)

 schedule(type[, chunk_size])

 ordered

 nowait

 lastprivate(list)

 reduction(operator: list)

 Usage Note:

 The construct is the same as a parallel construct immediately followed by a for work sharing
construct.

 Restrictions:

 This construct shares restrictions with the parallel and for constructs.

 parallel sections construct
 #pragma omp parallel sections [clause[clause] …]

 #pragma omp section

 Where clause is: if (scalar-expression)

 private(list)

 firstprivate(list)

 default (shared | none)

 shared(list)

 copyin(list)

 lastprivate(list)

 reduction(operator: list)

 Usage Note:

 This construct is the same as a parallel construct followed by a sections directive.

 Restrictions:

 This construct shares restrictions with the parallel and sections constructs.

 Master and Synchronization Constructs

 master construct
 #pragma omp master

 atomic construct
 #pragma omp atomic

 expression-stmt

 Usage Note:

 The atomic construct is semantically equivalent to critical statement. The single statement
expression-stmt must use one of the following forms:

 #pragma omp atomic
 x binop = expr or x++ or ++x or x-- or --x

 Where x is an lvalue expression of scalar type and no side effects.

 expr is an lvalue expression with no side effects. It must not
reference x.

 binop is not overloaded and is one of +, *, -, /, &, ^,
<<, >>, |

 Restriction

 All atomic references to the storage location x throughout the program are required to have a
compatible type.

 barrier construct
 #pragma omp barrier

Restrictions:

The smallest statement that contains a barrier directive must be a block (or a compound
statement).

 critical construct
 #pragma omp critical [(name)]

 Where name is: An identifier

 flush construct
 #pragma omp flush [(list)]

 Where list is a comma-separated list of variables that need to be flushed

A flush is implied by the following constructs:
• barrier
• At entry to and exit from critical
• At entry to and exit from ordered
• At the exit from parallel.
• At exit from for
• At exit from sections
• At exit from single

Restriction

A variable specified in a flush must not have a reference type.

 ordered construct
 #pragma omp ordered

 Restrictions:

• An ordered directive can only appear in the dynamic extent of a for directive that has the
ordered clause specified.

• An iteration of a loop with a for construct must not execute the same ordered directive more
than once, and it must not execute more than one ordered directive.

 Data Environment Constructs and Clauses

 threadprivate construct
 #pragma omp threadprivate(list)

 Where list is a comma separated list of variables that do not have an
incomplete type.

 Restrictions

• A threadprivate variable must not appear in any clause other than the copyin, schedule,
or the if clause. A default clause does not effect a threadprivate variable.

• The address of a threadprivate variable is not an address constant.
• A threadprivate variable must not have a reference type.
• A threadprivate variable with class type must have an accessible, unambiguous default

constructor.

copyin clause
copyin (list)

where list contains threadprivate variables.

 Restrictions:

• A variable that is specified in a copyin clause must have an accessible, unambiguous copy
assignment operator.

 default clause
 default(shared | none)

 Restrictions:

• Only a single default clause may be specified on a parallel directive.

 firstprivate clause
 firstprivate(list)

 Restrictions:

• All restrictions on private apply except for the restriction on const-qualified types.
• A variable with a class type that is specified firstprivate must have an accessible

unambiguous copy constructor.

 lastprivate clause
 lastprivate(list)

 Restrictions:

• All restrictions on private apply.
• A variable that is specified as lastprivate must have an accessible, unambiguous copy

assignment operator.

 private clause
 private(list)

 Restrictions:

• A variable with a class type that is specified as private must have an accessible, unambiguous
default constructor.

• Unless it has a class type with a mutable member, a variable specified as private must not
have a const-qualified type.

• A variable specified as private must not have an incomplete type or a reference type.
• Variables that are specified private on a parallel directive cannot be specified private

again on an enclosed work-sharing or parallel directive. As a result, variables that are
specified private on a work-sharing or parallel directive must be specified shared in
the enclosing parallel region

 reduction clause
 reduction (op:list)

 Where op is: + Initial value = 0
 * Initial value = 1
 - Initial value = 0
 & Initial value = ~0
 | Initial value = 0
 ̂ Initial value = 0
 && Initial value = 1
 || Initial value = 0

 Usage Note:

 A reduction is typically used in a statement with one of the following forms:
 x = x op expr
 x <op> = expr
 x = expr op x (except for subtraction)
 x++ or ++x or x-- or --x

where expr does not reference x.

 Restrictions:

• The type of the variables in the reduction clause must be valid for the reduction
operator except that pointer types and reference types are never permitted.

• A variable that is specified in the reduction clause must not be const-qualified.
• A variable that is specified in the reduction clause must be shared in the enclosing parallel

region.

 shared clause
 shared(list)

 Directive binding
 An OpenMP C/C++ program must adhere to the following rules with respect to directive binding:
• The for, sections, single, master and barrier directives bind to the dynamically

enclosing parallel, if one exists. If no parallel region is currently being executed, the
directives apply to a team consisting of the master thread.

• The ordered directive binds to the dynamically enclosing for.
• The atomic directive enforces exclusive access with respect to atomic directives in all

threads, not just the current team.
• The critical directive enforces exclusive access with respect to critical directives in all

threads, not just the current team.
• A directive can never bind to any directive outside the closest enclosing parallel.

 Directive Nesting
 An OpenMP C/C++ program must adhere to the following rules with respect to the dynamic nesting of
directives:
• A parallel directive dynamically inside another parallel logically establishes a new team

which is composed of only the current thread, unless nested parallelism is enabled.
• For, sections, and single directives that bind to the same parallel are not allowed to

be nested inside each other.
• Critical directives with the same name are not allowed to be nested inside each other
• For, sections and single directives are not permitted in the dynamic extent of

critical, ordered and master regions.
• Barrier directives are not permitted in the dynamic extent of for, ordered, sections,

single, master and critical regions.
• Master directives are not permitted in the dynamic extent of for, sections, and single

directives.
• Ordered directives are not allowed in the dynamic extent of critical regions.
• Any directive that is permitted when executed dynamically inside a parallel region is also

permitted when executed outside a parallel region.. When executed dynamically outside a user-
specified parallel region, the directive is executed with respect to a team composed of only the
master thread.

Runtime Library Functions
These routines use the include file <omp.h>. This file includes function prototypes and defines the type
omp_lock_t.

Execution environment functions
void omp_set_num_threads(int num_threads);
int omp_get_num_threads(void);
int omp_get_max_threads(void);
int omp_get_thread_num(void);
int omp_get_num_procs(void);
int omp_in_parallel(void);
void omp_set_dynamic(int dynamic_threads);
int omp_get_dynamic(void);
void omp_set_nested(int nested);
int omp_get_nested(void);

Lock functions
void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);
void omp_nuset_nest_lock(omp_nest_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

Environment Variables
OMP_SCHEDULE "schedule[, chunk_size]"
OMP_NUM_THREADS int
OMP_DYNAMIC TRUE || FALSE
OMP_NESTED TRUE || FALSE

About this document
This note was written by Tim Mattson of Intel Corporation. It is based on the OpenMP specification
"OpenMP C/C++ Applications Program Interface" version 1.0 dated October 1998.

Please send any comments or corrections to Tim Mattson at timothy.g.mattson@intel.com.

