
Typical Program Layout

• Most of these sections can be left out (depending

on your application).

• In the most common cases, main must exist

• Function prototypes can also include the

implementation, but best practice is to only have

prototypes before main and implementations after.

• A slightly different layout will be covered later.

1

Common Libraries

• stdio.h provides most/all of the expected Input/Output
routines

– more often than not, you’ll need these to debug your
program or monitor its progress

• stdlib.h provides numerous miscellaneous routines from
pseudo-random number generation to memory management
to sorting/searching and more

• math.h provides [almost] everything you might need to do
basic-intermediate math.

– trig, exponents, rounding, etc.

– In scientific computing, however, more advanced libraries
are usually needed

• mpi.h provides all of the routines in a given Message Passing
Interface implementation

– point-to-point communication, collectives, buffer
management, etc.

2

Canonical Hello World

• Traditional ”Hello World!” Includes stdio.h for

writing to stdout. Begin the program (main) and

print a literal string.

– As an aside, ”puts” is an output function akin

to printf with no format processing.

– As such, most modern compilers are smart

enough to turn printf(”Hello World!\n”) into

puts(”Hello World!”), for example.

3

Compiling and Running

• ”gcc” is the name of the compiler. Other options
include cc, icc, pgCC, CC, mpicc, and many others

• ”-o hello world” specifies that the source is
complied into the output file ”hello world”

• ”hello world.c” specifies the name of the source
file to compile

• ”./hello world” tells the shell to run the program
called ”hello world” located in the current
directory

4

Variables

• C provides many data types, these three classes

just provide the basic, most often used types

5

Arrays

• The examples illustrated here create static arrays. That is,
their size is fixed and those sizes must be known at compile
time (e.g. you can’t create an array in this manner based on
user input).

• Dynamic arrays are introduced (in part) later in this
presentation.

6

Conditionals and Loops

• Conditionals, a.k.a branching, provides a structure for executing certain
sections of code only in certain circumstances. There are a few different
methods for branching: a) traditional if-else; b) ternary, e.g. y = (x == 0
? NAN : 1/x), where the division by x will only occur if x != 0;
c) switches (example below); d) as well as a few others.

switch (var) {

case ’a’:

puts("Do this only when var == a");

break;

case ’b’:

case ’c’:

puts("Do this only when var == b OR c");

break;

default:

puts("Do this in all other cases");

}

7

Conditionals and Loops (cont...)

• Loops, of every kind, are used to execute the same body of
code more than once. The most common kinds of loops are
for loops and while loops.

– For loops are most often used when the body of the loop
needs to know which iteration is currently being executed
(as in initializing an array), or when the number of
iterations is known before-hand.

– For loops have three ”parameters,” separated by
semicolons: the counter’s starting value; the condition
that must be true in order to loop; what to do to the
counter after each iteration.

– While loops can be thought of as a for loop’s second
parameter: there is no notion of a ”built-in” counter,
only some condition that must be met.

Argument Processing

• The main function traditionally takes two arguments, argc
(”ARGument Count”) and argv (”ARGument Vector” or
”ARGument Values”)

• argv always has at least one element (argc is always ≥ 1)
which is set to the name of the running program. In our
hello world example above, this means argv[0] is set to
”./hello world”.

• All arguments come in a character strings and therefore
must be converted to the appropriate types for use later in
the program.

– (int)strtol(...) is the updated version of ”atoi”. The first
argument is the string to convert, the second is an
output argument and isn’t normally used, the third is the
base to convert to (10 is often called ”human readable”)

– strtof(...) is identical to strtol but converts to a float
whereas (int)strtol converts to a long and then casts it
as an int

9

Pointers and Memory Allocation
Pointers provide special ways of declaring and using variables. They allow you
to pass the location (address) of a variable to functions rather than a copy of
its value. In this manner, you can create functions with ”output arguments,”
allowing changes to those arguments made within the function to persist after
the function has returned.

• ”int * i” declares a pointer (* i) to a location in memory which stores
values of some type (int).

• ”malloc(...)” is the function that allocates memory. This memory comes
from what’s called the heap. Normally declared variables (e.g. ”int i =
0”) are allocated on the stack.

– malloc takes one argument, the number of bytes to allocate. By
passing ”sizeof(int)”, we circumvent the need to know how many
bytes a single integer uses on this particular machine.

– malloc returns a pointer to a chunk of memory of type NULL. By
prepending (int*) to the call, we cast it to a pointer to an integer
and can use the resulting chunk of memory accordingly.

10

Pointers and Memory allocation (cont...)

• Allocating memory for single dimensional arrays is
straightforward. Arrays are simply pointers to the start of
the array.

– ”int * a” creates a pointer to an integer;
”(int*)malloc(sizeof(int)*ELEMENTS)” says there
should be ELEMENTS number of integers starting at
this location in memory.

• Multi-dimensional arrays are trickier. A 2-Dimensional array
is actually a pointer to a set of pointers to integers.

– The first step, therefore, is to allocate a 1-Dimensional
meant to hold pointers to integers. This is what
(int**)malloc(sizeof(*int)*ROWS) does.

– Next, each of those pointers must be allocated as if they
themselves were also 1-Dimensional arrays; each points
to COLUMNS number of integers. This is what the for
loop accomplishes.

11

Functions

This short program calculates the factorial of a specified number.
There are a few important things to note here:

1. The function prototype does not need to specify the name of
the argument variables, only their type and order/quantity.

• If you were, however, to provide the implementation here
as well, then you do need the name of the arguments

2. A more complete version of the code would take the number
from the command line, verify that it is a number, otherwise
set it to a default value, and do more error checking for
overflow issues. For brevity, to fit on a single slide, these
features have been omitted.

3. The ternary operator is used here. ”(condition) ? (value
if true) : (value if false)” is roughly equivelant to:

12

if (condition) {

// commands if true

} else {

// commands if false

}

4. This is a tail-recursive implementation of factorial, meaning
the function operates by calling itself and can be rewritten
iteratively as such:

double factorial(int n) {

int i;

double ans = 1;

for (i = n; i > 1; --i)

ans *= i;

return ans;

}

Custom Header Files

• Header files provide a way to define custom libraries,
reference code in different source files, or simply clean up
your primary source file.

• Here, we’ve placed the factorial function in a header file
called fact.h. The double quotes around the filename
specifies that fact.h is a custom header rather than a system
header. This causes the compiler to look for the header in
places like the current directory.

• Header files can simply have more C code in them,
containing almost anything except another main.

• Compiling an executable from this example is identical to
compiling a single source ($ gcc -o fact fact.c)

– Other methods of using header files may require
intermediate steps (e.g. building object files)

13

Makefiles
This simple Makefile example illustrates one possibility for a Makefile to
compile a couple of the source examples used in this presentation.

• Variables can be defined by NAME=VALUE and are later referenced
using $(NAME)

– It is standard practice to define the compiler you’re using as a
variable as this makes changing it later very easy

– Common uses for Makefile variables include alternate or additional
libraries, build directories, compiler options, and more

• Any text from a ’#’ to the end of the line is a comment

• Targets specify ”jobs” to do, kind of like functions or subroutines. They
are defined with target name: at the beginning of the line.

– Anything after the ’:’ is a ”prerequisite” or ”dependency” and
corresponds to files that must exist in order for that target to
execute any of its commands

– Lines after the target must begin with a tab and specify commands
to run for that target. Commands can be any kind of action and
there can be any number of them

14

