
Hybrid Parallel Programs

Henry Neeman and Charlie Peck

Blue Waters/UPEP Institute @ NCSA

Shodor Education Foundation

May, 2010

1



How Did We Get Here?

Almost all of the clusters provisioned now and for the
forseeable future are constellations, that is they are composed
of nodes, each with 1 or more sockets holding CPUs with 2 or
more cores, connected by a high–speed network fabric.

With their additional levels of memory hierarchy these
constellation clusters are more difficult to use efficiently than
their predecessors, yet they offer the promise of significantly
greater cycles available for science. The Blue Waters
computational resource is a good example of this trend.

Often a hybrid approach, utilizing 2 or more of MPI, OpenMP,
pthreads and/or GPGPU techniques, can utilize these
computational resource more effeciently and effectively than
any one of them on their own.

2



Common Parallel Programming Paradigms,
Strengths and Weaknesses

• OpenMP

1. Strengths - relatively easy to use, portable, relatively

easy to adapt to existing serial software, standard

standard, low latency/high bandwidth communication,

implicit communication model, dynamic load balancing

2. Weaknesses - shared memory model only, i.e. one

“node”, support for C/C++ and FORTRAN only, no

explicit control over thread creation and rundown

3



• Message Passing Interface (MPI)

1. Strengths - support for C/C++, FORTRAN, Perl,

Python and other languages, scales beyond one shared

memory image “node”, widely used in the scientific

software community, enables you to harness more

memory which translates to bigger science

2. Weaknesses - non–standard standard to some extent,

can support shared memory model but not all bindings

do it efficiently, can be difficult to program, high

latency/low bandwidth communication, explicit

communication model, load balancing can be difficult



• GPGPU with CUDA

1. Strengths - ability to harness significant computational

cycles, becoming widely used in the scientific software

community

2. Weaknesses - can be difficult to program, non–portable

proprietary language, requires re–thinking many problems

to take advantage of the high degree of parallel

cardinality



• pthreads

1. Strengths - better granularity of control over thread

model than OpenMP, fairly portable, explicit control

over thread creation and rundown

2. Weaknesses - can be difficult to program, only fairly

portable



• Field Programmable Gate Array (FPGA)

1. Strengths - encode any algorithm in hardware

2. Weaknesses - can be difficult to program, not portable,

expensive hardware



Hybrid Parallel Algorithms

• OpenMP + CUDA

• OpenMP + FPGA

• MPI + OpenMP

• MPI + CUDA

• MPI + FPGA

• MPI + pthreads

• MPI + OpenMP + CUDA

• MPI + pthreads + CUDA

4



Designing, Building and Debugging Hybrid
Parallel Programs

• The basic approach is to find the most efficient way to do

the work, whether it be OpenMP (CPU), CUDA (GPGPU)

or pthreads or a blend of them, and then the most efficient

way to distribute the data and harvest the results via MPI.

• Study the communication pattern(s) to insure that the

algorithm maps to the architecture.

1. Embarrassingly parallel

2. Loosely coupled through tightly coupled

• Look for opportunities to overlap computation and

communication, this is a key attribute of efficient hybrid

parallel programs.

5



• Don’t design/implement an algorithm that requires more

than one type of parallelism to be enabled for it to run.

This will make testing and debugging much harder than it

needs to be.

• Better to {OpenMP, CUDA, Pthread} your MPI code than

the other way around. MPI is harder, do that first, then

work on the “on–node” parallelism.

• The simplest and least error prone architecture is to use

MPI calls only outside of any parallel regions {OpenMP,

pthreads} and only allow the master thread to

communicate between MPI processes. It’s also possible to

use MPI calls within parallel regions if you are using a

thread–safe MPI binding (not all of them are).

• Debug by running on one node and testing the {OpenMP,

CUDA, Pthreads}, then on 2–n nodes with just the MPI

enabled to verify the data transfer.



• Take care to have no more than about one process/thread

doing network communication contemporaneously,

contention for the network port will quickly become a

bottleneck unless there is a minimal amount of

communication.

• Take care to have no more than about two

processes/threads performing CUDA calculations

contemporaneously, contention for the I/O bandwidth

to/from the GPGPU card and the GPGPU’s cores can

become a bottleneck.


