
Preventing and Finding Bugs in Parallel
Programs

Charlie Peck
Earlham College

BW/UPEP Institute @ NCSA
May, 2011

1



How Did We Get Here?

Debugging serial programs can be hard; debugging parallel
programs is usually about -np X times harder.

This material is as much about software engineering and
debugging generally as it is about techniques unique to
debugging parallel programs. This reflects the nature of the
work at-hand.

2



Strategies for Preventing Bugs in Parallel
Programs

• Practice defensive programming:

1. Check all return codes

2. Check all function arguments (--pedantic --Wall)

3. Use layout to infer structure

4. Choose meaningful variable names

• Build, run, and test your program incrementally as you go,
this usually reduces the amount of code you have to
examine when something does go belly-up (and it most
likely will).

• Code deleted is code debugged, or put another way less is
often more in software engineering.

3



• Learn and use the features of the language that help
prevent bugs, e.g. in C use const variable declarations
rather than the pre-processor’s #define mechanism.

• Think carefully about how shared data elements are read
and written. All parallel programs are strong candidates to
exhibit race conditions.

• Make the program correct, then make the program fast.
This does not apply to the design of the algorithm but
rather to the details of the implementation.

• Days of debugging can save you hours of design and
planning.



Strategies for Finding Bugs in Parallel Programs

• The basic process:

1. Characterize the bug:

(a) If possible run the program serially, make sure it works
correctly in that mode.

(b) Run the program with 2-4 processes on a single core,
make sure it works correctly in that mode. In general
the fewer processes the easier it is to debug and on
one core many race conditions are prevented.

(c) Run the program with 2-4 processes on 2-4 cores.
This configuration begins to expose potential race
conditions and allows you to verify synchronization and
timing in a simple case.

4



2. Develop a script that automates the process of
“activating” the bug. Automation is key to making the
debugging process as effective and inoffensive as
possible.

3. Fix the bug.
4. Test the fix using the script developed earlier.

• To characterize the bug change the input and then study
the output. Do not keep the input constant, change the
code, and then study the output. Changing the input
exercises the whole path, whereas changing the code only
effects a limited portion, and may introduce new bugs. An
exception to this is the addition of print statements to
examine variables at runtime (see below).

• Work with the smallest problem size possible which
exercises all of the functionality. This allows you to examine
entire data structures, all loop iterations, etc.



• Suspect that it’s a race condition, setup test scripts to
prove that the program doesn’t have any.

• The non-deterministic nature of parallel programs can lead
to a false impression of what’s actually going on. Remove
as much of the non-determinism as you can.

• If you are developing code on a 64 bit platform build and
run it on a 32 bit platform, or the obverse. This illuminates
bugs related to word size.

• Use guarded print statements (e.g. #ifdef DEBUG

fprintf(stderr, "var = ...) and leave them in the program
when you are done, you’ll probably need them again. Most
bugs can found using this approach.

• Make DEBUG a symbol that can easily be set from the
command line of your program at runtime.



• Beware of lost output when a program terminates
abnormally, this leads to false impressions about what is
actually going on. Use fflush(stdout), or write to stderr

(which isn’t buffered) or use setbuf(STREAM, 0) to prevent
messages from being lost in a buffer when the program
crashes or deadlocks.

• Learn about the C constructs FILE , LINE , FUNCTION

and use them with a custom error handling routine (see
below) to improve the quality of your debugging output.

• Learn how to use gdb, it’s a powerful tool that can help find
many types of bugs.

• When you do start changing the code make one logical set
of changes at a time and then re-test. Keep your focus,
don’t wander off and start futzing with unrelated code
while working on a particular bug.



• Each time you go on a debugging tour document and
preserve the test script(s) that you develop. Add these to
the regression testing suite for that program.

• Don’t under-estimate the value of a second set of eyeballs.



Strategies for Preventing Bugs in MPI Programs

• Synchronization

– Problem - Only a single process calls a collective
communication function, e.g. MPI Reduce or MPI Bcast

– Solution - Do not put collective calls inside conditionally
executed code.

– Problem - Two or more processes are trying to exchange
data but all call a blocking receive function before any
calls a send function.

– Solution - Always call send before you call receive; use
MPI Sendrecv; use non-blocking send and receive calls.

5



– Problem - A process tries to receive data from a process
that will never send it, or send it to a process that will
never receive it.

– Solution - Use collective communications functions
whenever possible; if you need point-to-point
communications keep the communication pattern as
simple as possible.

– Problem - A process tries to receive data from itself.

– Solution - Carefully examine your source code.

– NOTE - Only some MPI bindings will hang in this case,
as of the most recent version of this presentation
MPICH will hang but OpenMPI will not.

– Problem - Deadlock.



– Solution - Perform operations in the same order in each
place they are done, e.g. send/receive pairs, collective
calls, and locking.

• Incorrect Results

– Problem - Data type mismatch between send and
receive, e.g. MPI INT on the send and MPI CHAR on the
receive.

– Solution - Make it easy to match-up your sends and
receives, check the message length and type.

– Problem - Mis-ordered or incorrect parameters to MPI
function calls.

– Solution - Check them closely and use a man page or
another MPI reference when coding.



• In general there are more opportunities for bugs with
point-to-point communications than with collective
communications.



Strategies for Finding Bugs in MPI Programs

• For point-to-point messages print the data elements before
the send and after the receive to make sure you are sending
and receiving what you think you are.

• Don’t assume the order of received messages when they
come from more than one process.

• Explore MPI’s support for custom error handlers. A
ready-to-use example of one can be found in
mpi-error-handler-example.c.

• Use the MPI functions MPI <type> set name and
MPI <type> get name, where <type> can be: Comm, Win, or
Type. These give human readable names to MPI’s
structures which can make debugging much easier.

6



• Always use fprintf(stderr, "rank=%d, ...", my rank, ...)

or cout statements, guarded with conditionals (see above),
so that it’s easy to identify where particular output is
coming from.

• Build and run your code with a different MPI binding. This
often illuminates bugs, and you want your code to work in
as many different environments as possible.

• Explore the debugging options supported by the MPI
binding you are using. Many bindings have linkages between
mpirun and debuggers that automagically invoke the
debugger when an error is encountered.


