
Supercomputing in Supercomputing in
Plain EnglishPlain English

 Tuning Tuning

Blue Waters Undergraduate Petascale Education Program

May 29 – June 10 2011

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 2

Outline

 Time to Run = Work/Resources + Overhead
 Real Work
 Algorithmic complexity
 Resources and overhead
 Amdahl's law
 Gustafson's law
 Karp-Flatt Metric
 Isoefficiency

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 3

Time To Run = Computation/Resources+Overhead

 How much real, distributable work is there to be done?
 How much computing power is available?
 How much overhead is required to set everything up?

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 4

Computation

 The work that actually does the science
 10% of the code in which 90% of the time is spent

 This is where real time savings are found
 Algorithmic complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 5

Algorithmic Complexity

 As n approaches infinity, how quickly do the program's
requirements (time, memory, etcetera) increase?

 Constant - O(1) – communication overhead in Area Under
Curve

 Logarithmic - O(log(n)) - worst case binary search time
 Polynomial

 Linear - O(n) – computation in Area Under Curve
 Quadratic – O(n^2) – computation in n-body

 Exponential – O(c^n) – Cryptographic hacking

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 6

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 7

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 8

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 9

Changing the Algorithm

 function fib(n)
if n = 0 return 0
if n = 1 return 1
return fib(n − 1) + fib(n − 2)

 Runs in exponential time (O(2^n))
 dictionary m := map(0 → 0, 1 → 1)

function fib(n)

 if map m does not contain key n

 m[n] := fib(n − 1) + fib(n − 2)

 return m[n]
 Runs in linear time (O(n))

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 10

Time/Space Tradeoff

 Using memory to save time or using time to save memory
 Time is generally what you'll most want to optimize, although

many algorithms have to optimize for both time and space.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 11

Virtual Memory and Paging

 Using more memory does not slow down the program
 Until you hit the available memory supply

 Virtual memory uses the hard drive to boost the available
memory supply

 The hard drive is slow, avoid virtual memory
 ulimit -a

 Shows current limits
 Virtual Memory will likely not be explicitly limited

 vmstat
 swpd: the amount of virtual memory used.
 free: the amount of idle memory

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 12

Resources Available Vs Overhead

 In single-thread programming, the programmer has little control
over resources available.

 Stop other running programs
 Parallelism increases the resources available at the cost of

additional overhead in the form of communication.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 13

Resources Available Vs Overhead

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 14

Amdahl's Law

 No amount of parallelization can make a program take less time
than the time to evaluate its sequential portions.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 15

Gustafson's Law

 The proportion of the computations that are sequential normally
decreases as the problem size increases.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 16

Speedup via parallelization

 Speedup = time for program to run in serial / time for
parallelized program to run

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 17

Karp-Flatt

Karp-Flatt Paper
http://portal.acm.org/citation.cfm?doid=78607.78614

A formula for finding e, the sequential fraction of a code
P = number of processors
 = observed speedup

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 18

Isoefficiency
Efficiency decreases as the number of
 processes increases with static problem size

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 19

Isoefficiency
How much does the problem size in relation to the number
of processes have to increase to maintain efficiency?

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 20

Isoefficiency

Isoefficiency paper
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00242438

	Supercomputing in Plain English Applications and Types of Parallelism
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

