
Supercomputing in Supercomputing in
Plain EnglishPlain English

 Tuning Tuning

Blue Waters Undergraduate Petascale Education Program

May 29 – June 10 2011

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 2

Outline

 Time to Run = Work/Resources + Overhead
 Real Work
 Algorithmic complexity
 Resources and overhead
 Amdahl's law
 Gustafson's law
 Karp-Flatt Metric
 Isoefficiency

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 3

Time To Run = Computation/Resources+Overhead

 How much real, distributable work is there to be done?
 How much computing power is available?
 How much overhead is required to set everything up?

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 4

Computation

 The work that actually does the science
 10% of the code in which 90% of the time is spent

 This is where real time savings are found
 Algorithmic complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 5

Algorithmic Complexity

 As n approaches infinity, how quickly do the program's
requirements (time, memory, etcetera) increase?

 Constant - O(1) – communication overhead in Area Under
Curve

 Logarithmic - O(log(n)) - worst case binary search time
 Polynomial

 Linear - O(n) – computation in Area Under Curve
 Quadratic – O(n^2) – computation in n-body

 Exponential – O(c^n) – Cryptographic hacking

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 6

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 7

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 8

Algorithmic Complexity

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 9

Changing the Algorithm

 function fib(n)
if n = 0 return 0
if n = 1 return 1
return fib(n − 1) + fib(n − 2)

 Runs in exponential time (O(2^n))
 dictionary m := map(0 → 0, 1 → 1)

function fib(n)

 if map m does not contain key n

 m[n] := fib(n − 1) + fib(n − 2)

 return m[n]
 Runs in linear time (O(n))

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 10

Time/Space Tradeoff

 Using memory to save time or using time to save memory
 Time is generally what you'll most want to optimize, although

many algorithms have to optimize for both time and space.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 11

Virtual Memory and Paging

 Using more memory does not slow down the program
 Until you hit the available memory supply

 Virtual memory uses the hard drive to boost the available
memory supply

 The hard drive is slow, avoid virtual memory
 ulimit -a

 Shows current limits
 Virtual Memory will likely not be explicitly limited

 vmstat
 swpd: the amount of virtual memory used.
 free: the amount of idle memory

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 12

Resources Available Vs Overhead

 In single-thread programming, the programmer has little control
over resources available.

 Stop other running programs
 Parallelism increases the resources available at the cost of

additional overhead in the form of communication.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 13

Resources Available Vs Overhead

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 14

Amdahl's Law

 No amount of parallelization can make a program take less time
than the time to evaluate its sequential portions.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 15

Gustafson's Law

 The proportion of the computations that are sequential normally
decreases as the problem size increases.

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 16

Speedup via parallelization

 Speedup = time for program to run in serial / time for
parallelized program to run

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 17

Karp-Flatt

Karp-Flatt Paper
http://portal.acm.org/citation.cfm?doid=78607.78614

A formula for finding e, the sequential fraction of a code
P = number of processors
 = observed speedup

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 18

Isoefficiency
Efficiency decreases as the number of
 processes increases with static problem size

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 19

Isoefficiency
How much does the problem size in relation to the number
of processes have to increase to maintain efficiency?

Supercomputing in Plain English: Apps & Par Types
BWUPEP2011, UIUC, May 29 - June 10 2011 20

Isoefficiency

Isoefficiency paper
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00242438

	Supercomputing in Plain English Applications and Types of Parallelism
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

