
Preventing Bugs and Finding Bugs in MPI
Programs

Charlie Peck

LSU/PSC Parallel and Cluster Computing

SC Education Program Workshop

July, 2009

#include "fancy logos and distracting graphics"

1



How Did We Get Here?

Debugging serial programs can be hard; debugging parallel

programs is usually about -np X times harder.

2



Strategies for Preventing Bugs in MPI Programs

• Deadlock

– Problem - Only a single process calls a collective

communication function, e.g. MPI Reduce or MPI Bcast

– Solution - Do not put collective calls inside conditionally

executed code.

– Problem - Two or more processes are trying to exchange

data but all call a blocking receive function before any

calls a send function.

– Solution - Always call send before you call receive; use

MPI Sendrecv; use non-blocking send and receive calls.

3



– Problem - A process tries to receive data from a process

that will never send it, or send it to a process that will

never receive it.

– Solution - Use collective communications functions

whenever possible; if you need point-to-point

communications keep the communication pattern as

simple as possible.

– Problem - A process tries to receive data from itself.

– Solution - Carefully examine your source code.

• Incorrect Results

– Problem - Type mismatch between send and receive, e.g.

MPI INT on the send and MPI CHAR on the receive.

– Solution - Make it easy to match-up your sends and

receives, check the message length and type.



– Problem - Mis-ordered parameters to MPI function calls.

– Solution - Check them closely and use a man page or

another MPI reference when coding.

• In general there are more opportunities for bugs with

point-to-point communications than collective

communications.

• Practice defensive programming: check all return codes,

check MPI function arguments, code deleted is code

debugged.

• Make the program correct, then make the program fast.



Strategies for Finding Bugs in MPI Programs

• If the program will run as a single process use this form to

debug it as much as possible.

• If the program will run with 2 processes on a single

node/core and exercise all of the functionality use this form

to debug it next. In general the fewer processes the easier

it is to debug and on one node/core many race conditions

are prevented.

• If the program will run with 2 processes on 2 nodes/cores

and exercise all of the functionality use this form to debug

it next. This configuration begins to expose potential race

conditions and allows you to verify synchronization and

timing in the simple case.

4



• Work with the smallest problem size possible which
exercises all of the functionality. This allows you to examine
entire data structures, all loop iterations, etc.

• Use fflush(stderr); after each fprintf(stderr, "rank=%d,

...", my rank, ...); call, this prevents messages from being
lost in a buffer when the program crashes or deadlocks.

• For point-to-point messages print the data elements before
the send and after the receive, make sure you are sending
and receiving what you think you are.

• Don’t assume the order of received messages from more
than one process.

• Guard your debugging statements with something like
#ifdef DEBUG ... #endif so that you can easily enable and
disable them as need be.

• Build, run, and test your program incrementally as you go,
this usually reduces the amount of code you have to
examine when something does go belly-up.



Tools, Techniques and Resources

• gdb, ddd, XMPI (LAM MPI only), other MPI binding specific
debuggers.

– while (1) do {} just after main and then attach with gdb

or
– A shell script with export DISPLAY=...; mpirun...

• FILE , LINE , FUNCTION with a C preprocessor macro.
• fprintf(stderr, "rank=%d, ...", my rank, ...) or cout

statements, bracketed with conditionals so they can be
easily enabled and disabled.

• Appendix C of Quinn’s Parallel Programming in C with MPI
and OpenMP

• Chapter 5 of Kernighan and Pike’s The Practice of
Programming

• http://www.open-mpi.org/faq/?category=debugging

5


