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Suffix	trees:	How	to	do	Google	Search	in	Bioinformatics?	
By	Ananth	Kalyanaraman,	Washington	Statee	University		

	
Rubric	for	Student	Assessment	

	
This	module	can	be	graded	out	of	100%,	which	allows	for	easy	conversion	to	

a	different	points‐based	grade	or	a	percent‐based	grade	depending	on	the	
instructor’s	preference.	For	instance,	the	instructor	can	weight	the	homework	
problems	(exercises	and	review	questions)	at	50%	and	the	the	programming	project	
at	50%.	

	
	

Review	Questions	and	Exercises	(weighted	at	50%)	
	
Note:	Instead	of	absolute	points,	each	problem	below	is	attached	to	one	of	three	
difficulty	levels:	
	
A‐level:	 Advanced	 (hardest)	
I‐level:		 Intermediate	level		
B‐level:	 Beginner	level	(very	easy)	
	
L1)		Lookup	table	for	“mississippi”	using	k=2:	
(B‐level)	
	
1	 2	 3	 4	 5	 6	 7	 8	 9	 10 11
m	 i	 s	 s	 i	 s	 s	 i	 p	 p	 i	
	
Mapping	characters	{i,m,p,s}	to	integer	values	{0,1,2,3}	respectively,	the	lookup	
table	will	have	4k	(=16)	entries	as	follows:	
	
Lookup	table:	
	
0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14 15
ii	 im	 ip	 is	 mi	 mm	 mp	 ms	 Pi	 pm	 pp	 ps	 Si	 sm	 sp	 ss	
	 	 	 2	 1	 	 	 	 	 	 	 	 4	 	 	 3	
	 	 8	 5	 	 	 	 	 10	 	 9	 	 7	 	 	 6	
	
	
L2)	Pattern	matching	using	lookup	tables:	
(I‐level)	
	
E.g.,	query	q=”issi”	and	text	T=	“ississippi”	should	return	text	indices	2	and	5	as	its	
answer.	
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Pseudocode	for	the	pattern	matching	algorithm:	
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐	
	

0. Assume	that	the	lookup	table	has	already	been	built	for	the	text	T.	
Also	assume	that	the	string	indexing	starts	from	1,		
and	that	the	lookup	table	indexing	starts	from	0.	
Let	n	denote	the	length	of	the	text	T,	and	m	denote	the	length	of	the	query	q.	

	 And	k	denotes	the	k‐mer	length.	
	

1. LinkedList	*PostitionList	=	NULL;	//	initialize	an	empty	linked	list	of	integers	
2. int	i=1;	
3. QueryWindow	=	q[i..i+k‐1];	
4. idx	=	LookupTableIndexOf(QueryWindow);		

//	returns	the	index	of	the	substring	denoted	by	QueryWindow	
5. Add	all	indices	in	the	list	of	LookupTable[idx]	to	PositionList.		

	
6. while(i<	(m‐k+1)	)	{	

a. If	PositionList	is	empty,	then	return	“Pattern	not	found”	and	exit.	
b. i=i+k;	
c. QueryWindow	=	q[i..i+k‐1];	
d. idx	=	LookupTableIndexOf(QueryWindow);		
e. Let	P_idx	represent	the	set	of	indices	in	LookupTable[idx]	such	that:	

j		P_idx	if	and	only	if,	j=r+k,	for	some	r	PositionList;	
f. If	P_idx	is	empty,	then	return	“Pattern	not	found”	and	exit.	
g. Retain	only	those	indices	r	in	PositionList	for	which	r+k	P_idx.	

Remove	all	other	indices.		
h. Replace	all	retained	indices	r	in	PositionList	by	r+k.		

	
}	//	end	while	
	

7. Manually	check	which	of	the	positions	left	over	in	PositionList	continue	to	
spell	out	the	remaining	k‐1	characters	of	the	query.	

8. Report	the	starting	indices	of	those	positions	as	answer.	
	
	
Run‐time	not	including	the	cost	for	lookup	table	construction:		
	 O(m	+	sum	of	the	sizes	of	PositionList	over	all	iterations)	
	
Memory	=	O(||k	+	N)	for	the	lookup	table	+	O(m)	for	the	query	
	 ,	where		is	the	alphabet	

Note:	the	space	required	to	store	PositionList	will	be	dominated	by	the	space	
taken	by	the	lookup	table	

	
		

L3)	Algorithm	to	compute	K‐distance	measure:	
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(B‐level)	
	
Input:	strings	s1	and	s2;	
Output:	K‐distance(s1,s2)	which	is	equal	to	|K(s1)\K(s2)|	+	|K(s2)\K(s1)|	
	
//	To	compute	|K(s1)\K(s2)|:	

1. int	dist=0;	
2. Build	a	lookup	table	for	s2;	
3. Slide	a	window	of	length	k	over	s1,	and	for	each	window	check	if	that	k‐mer	

is	present	in	the	lookup	table	for	s2	or	not.	If	it	is	not	present,	then	dist++;	
4. The	value	of	dist	is	equal	to	|K(s1)\K(s2)|	

	
To	compute	|K(s2)\K(s1)|	follow	a	similar	procedure,	with	just	the	roles	of	s1	and	
s2	reversed.		
	
Finally,	add	both	values	to	report	the	final	K‐distance.		
	
Run‐time:	O(|s1|+|s2|	+	||k	)	
Memory:	O(|s1|+|s2|	+	||k	)	
	
L4)	Lookup	table	construction	algorithm:	
(I‐level)	
	
Assume	={a,c,g,t};		 k	is	some	value	>	1	
	 T	is	the	text	string	of	length	N,	indexed	from	0	to	N‐1	
	 Our	algorithm	will	map	characters	{a,c,g,t}	to	{0,1,2,3}	integer	values	
	 This	implies	that	a	k‐mer	will	be	interpreted	as	a	k‐bit	base‐4	number.		

E.g.,	map	(“caa”	)	=	16,	and	map	(“cag”)	=	18.	
	
(this	pseudocode	is	written	closely	to	align	with	C	syntax)	
	

0. int	SIZE=||k	
1. int	**	LT=	(int	**)	malloc(sizeof(int	*)*SIZE;	 	 //	init	lookup	table	

	
2. for	(int	i=0;i<SIZE;i++)	LT[i]=NULL;	

	
3. First	insert	T[0..k‐1]	into	LT	in	a	brute‐force	manner		

i.e.,	append	index	0	to	the	list	pointed	to	by	LT[map(T[0..k‐1])].		
Note:	This	step	will	take	O(k)	time.	
	

4. int	PrevMapValue	=	map(T[0..k‐1]);	
	

5. i=1;	
	
//	 To	insert	all	remaining	k‐mers	follow	these	steps:	



Rubric	for	Student	Assessment	
Page	4	

6. while(i<(N‐k+1))	{	
a. int	NewMapValue	=	(PrevMapValue‐map(T[i‐1]))*4	+	map(T[i+k‐1]);	

//	because,	T[i+k‐1]	is	the	new	character	that	got	added	to	window,	
and		T[i‐1]	is	the	character	that	got	eliminated	from	the	window.	
Note	that	this	means	it	will	only	now	take	constant	time	to	insert	each	
k‐mer	from	here	on.	

a. Append	index	i	to	the	list	pointed		to	by	LT[NewMapValue];	
b. i++;	

}	
	
	
L5)	Suffix	tree	for	string	“mississippi$”	
(B‐level)	
	
	

	
	
The	above	picture	was	auto‐generated	using	the	animation	in	
http://pauillac.inria.fr/~quercia/documents‐info/Luminy‐
98/albert/JAVA+html/SuffixTreeGrow.html		
The	figure	follows	the	convention	discussed	in	the	slides,	which	is	to	represent	each	
edge	as	a	pair	of	integers	(starting	index,	ending	index)	of	a	substring	of	the	input	
string	that	corresponds	to	the	edge	label.	
Green	nodes	represent	leaves.		
Red	nodes	represent	internal	nodes.	
	
L6)		
(B‐level)	
	
If	the	input	string	is	a	concatenation	of	the	same	character	n	times,	then	the	
corresponding	suffix	tree	will	have	n+1	leaves	and	n‐1	internal	nodes.	
e.g.,	s	=	“aaaaaaaaa”	
	
	
L7)		
(B‐level)	
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Same	as	above.	E.g.,	s=”	aaaaaaaaa”.	
	
L8)		
(I/A‐level)	
	
GST	construction	in	linear	time:	
	
Since	we	know	that	the	suffix	tree	for	a	single	string	s	of	length	n	can	be	constructed	
in	O(n)	time	using	McCreight	or	Weiner	or	Ukkonen	algorithms,	we	can	treat	the	
problem	of	constructing	the	GST	for	a	set	of	k	strings	{s1,	s2,	…	sk}	to	be	that	of	
incrementally	building	the	GST	starting	with	the	suffix	tree	of	s1,	and	then	
superimpose	the	ST	for	s2	on	top	of	the	tree	already	built	for	s1,	and	ST	for	s3	on	top	
of	the	tree	already	built	for	{s1,	s2}	and	so	on.	
	
After	k	iterations	we	will	have	the	GST	for	{s1,	s2,	…	sk}.	
	
This	procedure	can	reuse	the	nodes	already	put	in	place	by	previous	iterations,	and	
so	the	overall	runtime	of	the	method	cannot	exceed	O(N),	if	N	is	the	sum	of	the	
lengths	of	all	the	k	input	strings.	
	
L9)		
(I‐level)	
	
LCS	algorithm	for	more	than	2	input	strings:	
	

0. First	build	the	GST	for	all	the	k	input	strings,	where	k>2.	
1. Traverse	the	tree	in	post‐order	(i.e.,	all	children	before	parent),	and	in	the	

process	keep	track	of	the	number	of	distinct	strings	whose	suffixes	are	
represented	under	each	internal	node	along	the	way.		

2. Let	 u	 denote	 the	 deepest	 such	 internal	 node	 (i.e.,	 the	 one	with	 the	 largest	
string	depth)	with	all	k	distinct	strings	represented	under	its	subtree.	Note:	it	
is	guaranteed	that	such	a		node	exists	(in	the	worst‐case	it	is	the	root).	

3. The	LCS	of	all	the	input	strings	is	then	the	path‐label	(u).		
	
L10)		
(B‐level)	
	
Suffix	array	and	LCP	array	for	“mississippi”:	
	
Assume	that	$	to	be	the	lexicographically	smallest.	
Also,	 assume	 the	 convention	 that	 LCP[i]	 =	 longest	 common	prefix	 length	 between	
suffixes	SA[i]	and	SA[i+1].	
	
	
	 1	 2	 3	 4	 5	 6	 7	 8 9 10 11 12	
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String:	 m	 i	 s	 s	 i	 s	 S	 i	 p p	 i	 $	
Suffix	
Array:	

12	 11	 8	 5	 2	 1	 10 9 7 4	 6	 3	

LCP	
Array:	

0	 1	 1	 4	 0	 0	 1	 0 2 1	 3	 Not	
defined

	
L11)		
(A‐level)	
	
Ideas	for	building	suffix	trees	on	distributed	memory	parallel	computers:		
	
There	are	multiple	possible	answers	to	this	open	ended	question.	Here	is	one	idea	
that	could	work.	This	idea	uses	a	lookup	table‐based	approach	to	first	partition	the	
suffix	tree	and	then	build	it	in	parallel.	In	practice	this	algorithm	is	better	suited	to	
build	the	GST	of	numerous	small‐length	strings.	
	

1. All	processors	read	O(N/p)	of	the	input	string.		
2. Each	processor	scans	its	local	input	segment	and	populates	a	local	lookup	

table	using	fixed	size	k‐mers.	Call	each	bin	of	this	lookup	table	a	“bucket”.		
3. Using	all‐to‐all	communications,	the	buckets	are	redistributed	such	that	

every	processor	receives	a	sum	total	of	O(N/p)	suffixes,	and	no	bucket	is	split	
across	processor	boundaries.	Obviously	this	step	assumes	that	every	bucket	
in	your	lookup	table	is	bounded	by	O(N/p)	suffixes,	which	is	likely	to	hold	
true	for	most	practical	inputs	(at	least	in	bioinformatics).	

4. Each	processor	now	has	a	set	of	local	buckets.	Each	bucket	contains	suffixes	
of	the	input	that	should	go	into	the	same	subtree	of	the	suffix	tree,	where	the	
subtree	is	rooted	by	an	internal	node	of	string‐depth	k.	

5. Therefore,	each	processor	can	now	iterate	over	its	buckets,	and	construct	the	
subtree	for	each	of	its	buckets	using	brute‐force	comparison	of	the	
characters	of	the	corresponding	suffixes.	To	do	this,	it	is	required	that	the	
processor	has	in	its	local	memory	all	suffixes	of	that	bucket.	This	can	be	
either	done	through	disk	I/O	(which	could	highly	inefficient	due	to	the	
randomness	of	the	suffix	indices)	or	through	communication	(in	which	case	
each	processor	will	need	to	intersperse	the	local	tree	computation	with	
communication	calls	to	get	the	next	batch	of	strings).	

	
If	applied	to	the	building	of	a	GST	of	k	strings,	each	of	which	is	roughly	l	in	
length,	it	can	be	shown	that	the	above	algorithm’s	computational	cost	can	be	
bounded	by	O(k*l2/p),	and	the	communication	cost	expected	to	be	O(k*l/p)	in	
bytes	transfer	although	over	multiple	iterations	(therefore	implying	a	large	
latency	which	could	potentially	be	masked	by	doing	pre‐fetches).	

	
Programming	Project	(weighted	at	50%)	
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It	is	encouraged	that	each	student	completes	the	programming	project	in	
teams	of	size	2	or	3	each.		The	project	can	be	graded	for	100	points	using	the	
following	breakdown:		

a) Algorithm	design	–	30	pts	
b) Naïve	algorithm	implementation	correctness	–	20	pts	
c) Suffix	tree	search	implementation	correctness	–	20	pts	
d) Performance	testing	and	justification	–	25	pts	
e) Design	simplicity	and	coding	documentation	–	5	pts	
	


