Parallelization: Sieve of Eratosthenes
By Aaron Weeden, Shodor Education Foundation, Inc.
Module Document

Overview

This module presents the sieve of Eratosthenes, a method for finding the
prime numbers below a certain integer. One can model the sieve for small integers
by hand. For bigger integers, it becomes necessary to use a coded implementation.
This code can be either serial (sequential) or parallel. Students will explore the
various forms of parallelism (shared memory, distributed memory, and hybrid) as
well as the scaling of the algorithm on multiple cores in its various forms, observing
the relationship between run time of the program and number of cores devoted to
the program. Two assessment rubrics, two exercises, and two student project ideas
allow the student to consolidate her/his understanding of the material presented in
the module.

Model

A positive integer is a number greater than 0 that can be written without a
fractional or decimal component. 1, 2, 3, 4, etc. are all examples.

A positive divisor is a positive integer that divides another integer without
leaving a remainder. For example, 2 is a positive divisor of 6, since 6 / 2 =3
remainder 0.

A natural number is a number used for counting or ordering. 0, 1, 2, 3, etc.
are all examples.

A prime number (or prime) is a natural number whose only positive
divisors are 1 and itself. The prime numbers below 12 are 2, 3,5, 7, and 11.

A composite number (or composite) is a natural number that is not prime,
i.e. one that has at least 1 divisor other than 1 and itself. Examples are 4 (2 isa
divisor), 6 (2 and 3 are divisors), 8 (2 and 4 are divisors), and 12 (2, 3, 4, and 6 are
divisors).

In this module we are interested in the question, “How do we find all the
primes under a certain integer?” One method is to use the sieve of Eratosthenes.
To see how the sieve works, we can follow the steps below, using the example of
finding the prime numbers under 16.

Quick Review Questions
1. What are the positive divisors of 127
2. What are the primes below 107?

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 1

Algorithm Example

=

Write out the numbers from 2 to 15.

Circle the smallest unmarked, uncircled number in the list.

3. For each number bigger than the biggest circled number, mark the
number if it is a multiple of the biggest circled number.

4. Repeat steps 2-4 until all numbers have been circled or marked. The

circled numbers will be the primes; the marked numbers will be the

composites.

N

Below is a more detailed description of what happens in pictures.

1. Write out the numbers 2 to 15.

2. Circle the smallest unmarked, uncircled number, which in this case is 2.

3. For each number bigger than 2, if the number is a multiple of 2, mark it.

O/ S
9)K 1 }/ 13 / 15
Parallelization: Sieve of Eratosthenes

Aaron Weeden - Shodor Education Foundation, Inc.
Page 2

4. Circle the smallest unmarked, uncircled number, which in this case is 3.

OoYRWEW,
FANAYE

5. For each number bigger than 3, if the number is a multiple of 3, mark it.

/o
Yo sTATY

6. Circle the smallest unmarked, uncircled number, which in this case is 5.

oYY
7707

7. For each number bigger than 5, if the number is a multiple of 5, mark it.
Notice that all multiples of 5 have already been marked. Circle the smallest
unmarked, uncircled number, which in this case is 7.

HoYioY,
77070

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 3

7. For each number bigger than 7, if the number is a multiple of 7, mark it.
Notice that all multiples of 7 have already been marked. Circle the smallest
unmarked, uncircled number, which in this case is 11.

[O/Of
777 T

8. For each number bigger than 11, if the number is a multiple of 11, mark it.
Notice that all multiples of 11 have already been marked. Circle the smallest
unmarked, uncircled number, which in this case is 13.

{oyioY,
g{oy(o)s

9. For each number bigger than 13, if the number is a multiple of 13, mark it.
Notice that all multiples of 13 have already been marked.

All numbers have now been circled or marked, so we have finished the
algorithm. The prime numbers less than 16 are the circled numbers: 2, 3,5,7, 11,
and 13. The composite numbers less than 16 are the marked numbers: 4, 6, 8, 9, 10,
12,14, and 15.

We can model the sieve by hand for small numbers like 16. For much larger
numbers, it becomes necessary to find a more streamlined way of doing so, such as
through automation using a computer. The next few sections present a way to code
the sieve so that a computer simulation is possible. This code is serial, i.e. non-
parallel. The next sections after that will explore a parallel code to accomplish the
same task.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 4

Serial Code

This section explains the serial code that is attached to this module,
sieve.serial.c ,foundinthe sieve directory thatis created by extracting
the sieve.zip file. The section presents snippets of code followed by
explanations of the snippets.

/* Declare variables */
N = 16; /* The positive integer under which we are
finding primes */
sqrtN = 4; /* The square root of N, which is stored
in a variable to avoid making
excessive calls to sqgrt(N) */

c = 2; /* Used to check the next number to be
circled */
m = 3; /* Used to check the next number to be

marked */
list; / The list of numbers - if list[x] equals
1, then x is marked. If list[x] equals
0, then x is unmarked. */
next option = ' ‘; /* Used for parsing command
line arguments */

We initialize N with the same arbitrary example value that we used in the
Algorithm Example section above, 16 . As we'll see below, the user can change this
value at runtime by passing a command line argument to the program.

The values of sqrtN , ¢ ,and m will be overwritten later, but best
practice is to initialize all variables.

list will be an array, but we do not yet know how big it will be (again
because N ’svalue can be changed below). Since we do not know what size it will
be, but we do know what type of elements it will contain, we declare it as a pointer
to

next option isused in the code snippet below.

/* Parse command line arguments -- enter 'man 3
getopt' on a shell for more information */
while ((next _option = getopt(argc, argv, "n:"))
1= -1) {

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 5

If the user does not wish to use the default value of N , she/he can choose a
different value by passing it to the program on the command line using the —n
option. For example, running ./sieve.serial —-n 100 would find the primes
under 100 . This is achieved through the getopt () function.

getopt () takes three arguments: the first two arguments to main (argc
, which is the count of arguments, and argv , which is the list of arguments) and a
string of possible options ("n:" in this case). The string n: means that the user
can pass -n followed by an argument.

getopt () scanseach argumentin argv ,one ata time, and returns it. In
our code, we catch this return value and store itin the next option variable so
that we can use itin the switch/case statement.

getopt () returns -1 ifithasrun outof optionstoscanin argv . Our
while loop will run until getopt () returns -1 ,i.e.until there are no more
options to scan in argv .

switch (next _option) ({
case 'n':
N = atoi (optarqg) ;
break;

The value we stored in next option isusedinthe switch/case
statement. If next option is 'n' ,thenweset N to optarg , which stores
the value that followed -n on the command line. This must be converted from a

string toan ,S0 we use atoi (optarg) , which converts optarg to
an
default:
fprintf (stderr, "Usage: %s [-n N]\n",
argv[0]) ;
exit(-1);

-n is the only option we want to make available. If the user enters any other
option (i.e.in the default case), we print a usage message to the user, which tells

her/him the correct way to run the program. We then exit the program with an
error using exit(-1)

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 6

Quick Review Questions

3. What would the command look like for running the program to find the
primes under 50007

4. What would happen if the user entered “. /sieve.serial -p” onthe
command line?

/* Calculate sqrtN */
sqgrtN = () sqrt(N) ;

To calculate the square root of N ,we usethe sqrt() function, which
returns a value with type . We cast this value as type instead and
assign it to the sgrtN variable.

/* Allocate memory for list */
list = (*)malloc (N * sizeof ());

list is declared as a pointer. To make it useable as an array, we must
allocate memory for it. This can be achieved using the malloc () function. We
want to allocate enough memory for N positive integers, each of which has a
certain size, determined by the sizeof function. So, we pass N *
sizeof () to malloc() . malloc() allocatesthat memory and returns
a pointer to it. We cast this pointer (i.e. change its data type) to so that it
matches the data type of 1ist , and we assign this new pointerto list .

/* Exit if malloc failed */
if (list == NULL) {
fprintf (stderr, "Error: Failed to allocate memory
for list.\n");
exit(-1);
}

malloc () should be able to allocate this memory, but it will occasionally
fail, especially if there is not enough memory available. If malloc () does fail, we
want to halt the execution of our program (using exit (-1)) and notify the user
that something went wrong.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 7

/* Run through each number in the list */
for(c = 2; ¢ <= N-1; c++) {

/* Set each number as unmarked */
list[c] = 0;

We set a number as unmarked by puttinga 0 inits placeinthe list
array. To set the number represented by ¢ as unmarked, we use list[ec] = 0

To set ¢ unmarked for all values of ¢ ,weusea for loopwith ¢
ranging from 2 to N-1 .

Quick Review Question
5. Atthis point in the program, if the value of N is 8, what will be the value of
list[7]?

/* Run through each number up through the square root
of N */
for(c = 2; ¢ <= sqrtN; c++) {

/* If the number is unmarked */
if (list[e] == 0) {

If we want to check each number in the list to see if it prime, we can loop
from 2 to N-1 with a different value of ¢ each time. However, we can save
time by only going through sqrt (N) . Recall thatin the Algorithm Example we
were looking for primes under 16. We started out by circling 2 and marking all its
multiples, then circling 3 and marking all its multiples, then circling 5, etc. At some
point, we came across a number that had no multiples less than 16 that were not
already marked, namely 5. If we stopped at this point and just circled all of the
remaining unmarked numbers, we would still have the correct list of primes as a
result. The reason for this is that if the square root of N is multiplied by itself, we
get N , which is already bigger than N-1 . We do not need to multiply the square
root of N by anything smaller, because these numbers have already been circled
and their multiples found. We also do not need to multiply the square root of N by
anything bigger, because these multiples will all be bigger than N , therefore bigger
than N-1 ,i.e.bigger than any number that we need to check to be a multiple of ¢
. Thus, we only need to loop ¢ from 2 to sqrtN .

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 8

We know a number is prime if it is unmarked. Recall that we indicate a
number is unmarked by setting itas such: 1list[c] = 0 . We can checkifitis
unmarked through the if (1list[c] == 0) statement.

Here is where we would circle the number, but we can indicate that a
number is circled by simply keeping it unmarked in the array. At the end of the
program, the numbers that are unmarked will be the same as the ones that would be
circled if we performed the algorithm by hand. The circles help us when we are
working by hand to keep track of which number we should use for the value of ¢ .
Since ¢ isalways increasing in the for loop, we do not have to worry about the

computer losing track of this, and we do not need to do anything to “circle” the
number.

/* Run through each number bigger than c
*/
for(m = c+l; m <= N-1; m++) {

/* If m is a multiple of c */
if (m%c == 0) {

/* Mark m */
list[m] = 1;

To mark a number, we puta 1 initsplacein list . list[m] = 1 will
mark number m .

We only want to mark m if it is a multiple of the number that is currently
circled, ¢ . To check if this is the case, we can use the modulo operator, % . The
modulo operator returns the remainder of a division of integers. For example, 7%3
would return 1 ,since 7/3 is 2 remainder 1 . Ifthe remainderis 0 ,then
the division was even. For example, 6%2 is 3 remainder 0 . So, m%c == 0 is
true if m is a multiple of ¢ .

We want to run through each number bigger than ¢ to find multiples. The
smallest number bigger than ¢ is c+1 ,and the biggestin the sieveis N-1 . We
usea for loopfrom c+1 to N-1 to cover all values of m .

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 9

/* Run through each number in the list */
for (c = 2; ¢ <= N-1; c++) {

/* If the number is unmarked */
if(list[c] == 0) {

/* The number is prime, print it */
printf("%d ", c);

}

}
printf ("\n");

To print a number, we use the printf () function. This takes a string
followed by the arguments that are referenced within this string. In this example,
%d references c . We print all the numbers that are unmarked; this is our list of
primes.

When we are finished printing numbers, we print a newline with
printf ("\n") so thatthe shell prompt will start on a new line when the
program finishes running.

/* Deallocate memory for list */
free(list) ;

return 0;

Just as we allocated memory for 1ist , we must also deallocate it by calling
the free () function, which allows other processes to use the memory that was
being used by 1list . This follows the general rule that every malloc () should
be matched witha free ()

When the program finishes, we return from themain () function with 0
to indicate that the program finished successfully.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 10

Running the Serial Code

The serial code can be compiled with the GNU compiler by entering gcc -o
sieve.serial sieve.serial.c -1m inashell. This creates an executable
called sieve.serial , which can be run in the shell by entering
./sieve.serial . Confirm that the program works for a few values of N by
using ./sieve.serial -n followed by your choice of N . An example of this
is shown below.
gcc -0 sieve.serial sieve.serial.c -1m
./sieve.serial -n 10
357
./sieve.serial -n 50
35 7 11 13 17 19 23 29 31 37 41 43 47
./sieve.serial -n 100
357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97
$./sieve.serial -n 1000
2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367
373 379 383 389 397 401 409 419 421 431 433 439 443
449 457 461 463 467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593 599 601 607 613
617 619 631 641 643 647 653 659 661 673 677 683 691
701 709 719 727 7733 739 743 751 757 761 769 773 787
797 809 811 821 823 827 829 839 853 857 859 863 877
881 883 887 907 911 919 929 937 941 947 953 967 971
977 983 991 997
$

Ny N Uy N Uy U

The next few sections provide an introduction to parallelism, parallel
hardware, and the motivations for parallelism, followed by discussions of the
parallel codes for sieve of Eratosthenes.

Introduction to Parallelism

In parallel processing, rather than having a single program execute tasks in a
sequence (like the tasks of the algorithm above), parts of the program are instead
split such that the program is executed concurrently (i.e. at the same time), by
multiple entities.

The entities that execute the program can be called either threads or
processes depending on how memory is mapped to them.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 11

In shared memory parallelism, threads share a memory space among them.
Threads are able to read and write to and from the memory of other threads. The
standard for shared memory considered in this module is OpenMP, which uses a
series of pragmas, or directives for specifying parallel regions of code in C, C++ or
Fortran to be executed by threads.

In contrast to shared memory parallelism, in distributed memory
parallelism, processes each keep their own private memories, separate from the
memories of other processes. In order for one process to access data from the
memory of another process, the data must be communicated, commonly by a
technique known as message passing, in which the data is packaged up and sent
over a network. One standard of message passing is the Message Passing
Interface (MPI), which defines a set of functions that can be used inside of C, C++ or
Fortran codes for passing messages.

A third type of parallelism is known as hybrid, in which both shared and
distributed memory are utilized. In hybrid parallelism, the problem is broken into
tasks that each process executes in parallel. The tasks are then broken further into
subtasks that each of the threads execute in parallel. After the threads have
executed their sub-tasks, the processes use the shared memory to gather the results
from the threads. The processes use message passing to gather the results from
other processes.

In the next section we explore the type of hardware on which processes and
threads can run.

Quick Review Questions:

6. What is the name for entities that share memory? For those with
distributed memory?

7. What is message passing and when is it needed?

Parallel Hardware

In order to use parallelism, the underlying hardware needs to support it. The
classic model of the computer, first established by John von Neumann in the 20th
century, has a single CPU connected to memory. Such an architecture does not
support parallelism because there is only one CPU to run a stream of instructions.

In order for parallelism to occur, there must be multiple processing units running
multiple streams of instructions. Multi-core technology allows for parallelism by
splitting the CPU into multiple compute units called cores. This model works well
for shared memory parallelism because the cores will often share RAM. Parallelism
can also exist between multiple compute nodes, which are computers connected by
a network. This requires distributed memory parallelism, since each compute node
has its own RAM. Compute nodes may themselves have multi-core CPUs, which
allow for hybrid parallelism: shared memory among the cores and message passing
between the compute nodes.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 12

Quick Review Questions:
8. Why is parallelism impossible on a von Neumann computer?
9. What is the difference between a core and a compute node?

Motivation for Parallelism

We now know what parallelism is, but why should we use it? The three
motivations we will discuss here are speedup, accuracy, and weak scaling. These
are all compelling advantages for using parallelism, but some also exhibit certain
limitations that will also be discussed.

Speedup is the idea that a program will run faster if it is parallelized as
opposed to executed serially. The advantage of speedup is that it allows a problem
to be solved faster. If multiple processes or threads are able to work at the same
time, the work will theoretically be finished in less time than it would take a single
instruction stream.

Accuracy is the idea of forming a better model of a problem. If more
processes or threads are assigned to a task, they can spend more time doing error
checks or other forms of diagnostics to ensure that the final result is a better
approximation of the problem that is being solved. In order to make a program
more accurate, speedup may need to be sacrificed.

Weak scaling is perhaps the most promising of the three. Weak scaling says
that more processes and threads can be used to solve a bigger problem in the same
amount of time it would take fewer processes and threads to solve a smaller
problem. A common analogy to this is that one person in one boat in one hour can
catch much fewer fish than ten people in ten boats in one hour.

There are issues that limit the advantages of parallelism; we will address two
in particular. The first, communication overhead, refers to the time that is lost
waiting for communications to take place in between calculations. During this time,
valuable data is being communicated, but no progress is being made on executing
the algorithm. The communication overhead of a program can quickly overwhelm
the total time spent solving the problem, sometimes even to the point of making the
program less efficient than its serial counterpart. Communication overhead can
thus mitigate the advantages of parallelism.

A second issue is described in an observation put forth by Gene Amdahl and
is commonly referred to as Amdahl’s Law. Amdahl’s Law says that the speedup of a
parallel program will be limited by its serial regions, or the parts of the algorithm
that cannot be executed in parallel. Amdahl’s Law posits that as the number of
processors devoted to the problem increases, the advantages of parallelism
diminish as the serial regions become the only part of the code that take significant
time to execute. In other words, a parallel program can only execute as fast as its
serial regions. Amdahl’s Law is represented as an equation below.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 13

1
Speedup = 1_P E , where
(1-PhH N

P = the time it takes to execute the parallel regions
1 - P = the time it takes to execute the serial regions
N = the number of processors

Amdahl’s Law shows us that a program will have diminishing returns in
terms of speedup as the number of processors is increased. However, it does not
place a limit on the weak scaling that can be achieved by the program, as the
program may allow for bigger classes of problems to be solved as more processors
become available. The advantages of parallelism for weak scaling are summarized
by John Gustafson in Gustafson’s Law, which says that bigger problems can be
solved in the same amount of time as smaller problems if the processor count is
increased. Gustafson’s Law is represented as an equation below.

Speedup(N)=N-(1-P)*(N-1)
where
N = the number of processors
(1 - P) = the time it takes to execute the serial regions

Amdahl’s Law reveals the limitations of what is known as strong scaling, in
which the problem size remains constant as the number of processors is increased.
This is opposed to weak scaling, in which the problem size per processor remains
constant as the number of processors increases, but the overall problem size
increases as more processors are added. These concepts will be explored further in
an exercise.

After reading about parallelism and its motivations, students should be ready
to do Exercise 1, which takes the student through logging into a cluster, writing a
small piece of parallel code, and submitting it to a scheduler, which manages the
programs that are being run on the cluster. Exercise 1 is included as an attachment
to this module.

After completing the exercise, students can explore the parallel algorithms of
the sieve of Eratosthenes. We start with the OpenMP algorithm.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 14

Quick Review Questions:
10. What is Amdahl’s Law? What is Gustafson’s Law?
11. What is the difference between strong scaling and weak scaling?

OpenMP Algorithm

In a parallel algorithm using shared memory, we want multiple threads to
work simultaneously. It is not enough to have one thread executing tasks in order.
We must identify procedures that are able to take place at the same time.

Let us first look back at the Algorithm Example we used earlier:

1. Write out the numbers from 2 to 15.

2. Circle the smallest unmarked, uncircled number in the list.

3. For each number bigger than the biggest circled number, mark the
number if it is a multiple of the biggest circled number.

4. Repeat steps 2-4 until all numbers have been circled or marked. The
circled numbers will be the primes; the marked numbers will be the
composites.

Which of these steps can be made parallel? We can answer this question by
looking at the steps and thinking about their dependencies. For example, step 1 can
be made parallel; one thread writing a number does not depend on another thread
writing a different number. We can rewrite the step this way:

1. In parallel, threads write out the numbers from 2 to 15.

This rephrases the step in language that supports shared memory
parallelism. Numbers can be written to memory without worry of overwriting other
numbers, since each number is assigned its own chunk of memory.

Can step 2 be made parallel? No. There is only one smallest unmarked,
uncircled number in the list at any given time, and only one thread needs to circle it
at a time. This partis in a serial region of the algorithm; it cannot be made parallel.

What about step 3?7 This can be made parallel. One thread marking one
multiple of a number does not depend on another thread marking another multiple
of the number. We can rewrite the step this way:

3. In parallel, threads mark the multiples of the biggest circled number.

Can step 4 be made parallel? No, because it contains a section that must be
serial, namely step 2. Thus, we can conclude that only steps 1 and 3 can be made
parallel.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 15

How does this look in the code? It is a simple addition to the serial code; two
lines are added, both of which are #pragma omp parallel for . Ifthislineis
placed above a for loop, the loop will be split up among the threads, and each
thread will execute a different iteration of the loop. For example:

/* Run through each number in the list */
#pragma omp parallel for
for(c = 2; ¢ <= N-1; c++) {

/* Set each number as unmarked */
list[c] = 0;

In this loop, each thread is assigned a different value of ¢ , which the thread
uses to complete an iteration of the loop. Once the thread finishes, if there are any
more iterations of the loop to complete, the thread is assigned another value of ¢ .
This continues until all iterations of the loop have been finished.

This code can be compiled using gcc —-fopenmp -o sieve.openmp
sieve.openmp.c —1m . Notethe -fopenmp option; this tells the compiler to
enable OpenMP. The number of OpenMP threads used by the program can be
adjusted by changing the OMP NUM THREADS environment variable (for example
by entering export OMP NUM THREADS=2 ina BASH shell to specify two
threads). The OpenMP program is run the same way as the serial program using
./sieve.openmp . Confirm that the program works for a few values of N by
using ./sieve.openmp -n followed by your choice of N . An example of this
is shown below.
gcc -fopenmp -o sieve.openmp sieve.openmp.c -1lm
./sieve.openmp -n 10
357
./sieve.openmp -n 50
35 7 11 13 17 19 23 29 31 37 41 43 47
./sieve.openmp -n 100
357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97
$./sieve.openmp -n 1000
2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367
373 379 383 389 397 401 409 419 421 431 433 439 443
449 457 461 463 467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593 599 601 607 613

Ny Ny N Uy U

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 16

617 619 631 641 643 647 653 659 661 673 677 683 691
701 709 719 727 733 739 743 751 757 761 769 773 787
797 809 811 821 823 827 829 839 853 857 859 863 877
881 883 887 907 911 919 929 937 941 947 953 967 971
977 983 991 997

MPI Code

An MPI version of the code is similar to OpenMP, but it uses processes and
distributed memory instead of threads and shared memory. Distributed memory
requires a few more considerations than shared memory when programming.
These are discussed below.

One consideration is that each process will receive a copy of the same
program. The compiled program will be executed in its entirety by each process.
This differs from shared memory parallelism, in which threads are spawned only at
certain times during the program, followed by sections in which only one thread is
executing.

All threads are able to modify the 1list array in parallel in this code
snippet that uses shared memory:

/* Run through each number in the list */
#fpragma omp parallel for
for(c = 2; ¢ <= N-1; c++) {

/* Set each number as unmarked */
list[c] = 0;

With distributed memory, the 1ist array of one process cannot be
accessed by another process. Each process will need to work on its own list
array.

All processes must find all the primes in the numbers 2 through sqrtN .
After this, they can split up the range of numbers above sgrtN to find the rest of
the primes. In our distributed memory code, we use two different lists to handle
these two different tasks. 1istl is designated for the numbers 2 through
sqrtN . list2 contains a section of the remaining numbers.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 17

The size of a process’s 1ist2 array will depend on how we split up the
remaining numbers among the processes. If we wish to make as even a split as
possible, we can simply divide the count of numbers by the count of processes. We
determine the count of numbers by subtracting the smallest number from the
largest number and adding 1 (for example, in the range 2 to 4, there are 3 numbers,
which we can obtain by 4-2+1). In our case this count will be (N-1)-

(sqrtN+1) +1 , which simplifiesto N- (sqrtN+1) . We then divide this number
by the number of processes, p ,toobtain (N- (sqrtN+1))/p . We can call this
number S , for “split size”.

If things do not divide evenly, some remainder will result. This remainder
can be obtained with the modulus operator (%). The remainder of the split will be
(N- (sqrtN+1)) $p . We can call this number R , for “remainder”. What do we
do with this remainder? It must be assigned to one of the processes. As we'll see
below, it can be advantageous to assign it to the last process so the arithmetic is a
little easier to work with.

Let’s try our splitting up of numbers on an example. Assume we want to find
the primes under 100 and we have 3 processes. Each process is assigned a split size
of (100-(sqgrt(100)+1)) /3 , whichsimplifiesto 29 . Rank 2 is the last
process, so it would be assigned a remainder of (100-(sqrt(100)+1))%3 ,
which simplifiesto 2 .

What are the bounds of 1ist2 ? Each process will have a lowest and
highest number in its split. We can call these values L and H ,respectively. We
know that L must be atleast as bigas sqrtN+1 . This will be the L of RankO0,
since Rank 0 is responsible for the first split. Rank 0 is responsible for S numbers,
soits H willbe L+S-1 ,or sqrtN+1+S-1 ,orjust sqrtN+S . Rank1is
responsible for the next number after this, so its L will be sqrtN+S+1 . Itisalso
responsible for S numbers, soits H willbe L+S-1 ,or sqrtN+S+1+S-1 ,or
just sqrtN+2*S . Rank 2 is responsible for the next number after this, so its L
will be sqrtN+2*S+1 . Its H willbe L+S-1 ,or sqrtN+2*S+1+S-1 ,orjust
sqgrtN+3*S . The pattern in general is that Rank r ’s L willbe sqrtN + r*S
+ 1 ,andits H willbe L+S-1 . Finally, since the last process (which has rank
p-1) is responsible for the remainder (R), we add itto its H using H += R .

One last consideration to make is that only Rank 0 will be printing values. In
order for Rank 0 to print the values in each 1ist2 of the other processes, those
processes will each need to send Rank 0 a message containing its 1ist2 . This
happens at the end after all multiples have been marked.

With all these considerations in mind, let us look how the distributed
memory code, sieve.mpi.c ,differs from the serial and OpenMP versions.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 18

Quick Review Qu

estions

For the following 2 questions, assume there are 4 processes and we are
trying to find the primes under 16 using the MPI version of the program.
12. What will be the biggest number contained in 1istl ?

13. What will be the values for S and R ?

14. What will be the values of L and H for each of the processes?

listl; /

1list2; /

S =0; /*
R=0; /*
L=20; /*
H=0; /*

r=0; /*
p=20; /*

The list of numbers <= sqrtN -- if
listl[x] equals 1, then x is
marked. If listl[x] equals 0, then x is
unmarked. */
The list of numbers > sqrtN - if
list2[x-L] equals 1, then x is marked.
If 1list2[x-L] equals 0, then x is
unmarked. */
A near-as-possible even split of the
count of numbers above sqrtN */
The remainder of the near-as-possible
even split */
The lowest number in the current
process’s split */
The highest number in the current
process’s split */
The rank of the current process */
The total number of processes */

These are the new variables that have been added to the MPI version of the

code. You can review wh

at they represent by reading back over the previous few

paragraphs of this document.

/* Initialize

the MPI Environment */

MPI Init(&argc, &argv);

Before we can do anything with MPI, we must first initialize the environment.
MPI Init() mustbe called before any other MPI functions can be called. We
passit argc and argv so thatit can strip out command line arguments that are
relevant to it. We must pass these by address using the ampersand (&) operator.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 19

/* Determine the rank of the current process and
the number of processes */
MPI Comm rank (MPI_COMM WORLD, &r);
MPI Comm_ size (MPI_COMM WORLD, &p);

After we have initialized MPI, we can call our first MPI functions,
MPI Comm rank() and MPI_Comm size() , which will help us determine the
values of the r and p variables, respectively. The first argument of each of these,
MPI_COMM WORLD , specifies the communicator of the MPI processes. This is the
group of processes among which the current process is able to send and receive
messages. MPI_COMM WORLD is the default value and refers to all the processes.

Once these two functions have been called, we will have values for the rank
of the current process and the total number of processes that we can use later.

/* Calculate S, R, L, and H */
S = (N-(sqrtN+1l)) / p;

R = (N-(sqrtN+1l)) % p;
L = sqrtN + r*s + 1;
H = L+S-1;
if (r == p-1) {
H += R;
}

S, R, L ,and H are calculated as explained above.

/* Allocate memory for lists */
listl = (*)malloc((sqrtN+1l) * sizeof());
list2 = (*)malloc ((H-L+1) * sizeof())

listl will contain all the numbers less than sgrtN+1 . 1list2 will

contain the process’s split of the rest of the numbers, the size of which we can now
representas H-L+1 .

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 20

/* Run through each number in listl */
for(c = 2; ¢ <= sqrtN; c++) {

/* Set each number as unmarked */
listl[c] = O;
}

/* Run through each number in list2 */
for(c = L; ¢ <= H; c++) {

/* Set each number as unmarked */
list2[c-L] = O;

We run through each number in each list and set it as unmarked. Note that
we set number ¢ in list2 by setting element c-L . Why do we do this?
Consider Rank 0. If it is responsible for marking number sqrtN+1 first, it will
want to do so in element 0 of the array, not in element sqrtN+1 . If we subtract
L from sqrtN+1 , we getthe value we want, 0 . In general, numbers L
through H are stored in elements 0 through H-L of 1list2 ,and number c
will be stored in element c-L of list2 .

Quick Review Questions

For the following 2 questions, assume there is 1 process and we are finding
the primes under 16 using the MPI version of the program.

15. In which list will the number 3 be stored? At which position?

16. In which list will the number 8 be stored? At which position?

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 21

/* Run through each number in listl */
for(c = 2; ¢ <= sqrtN; c++) {

/* If the number is unmarked */
if (listl[e] == 0) {

/* Run through each number bigger than c in
listl */
for(m = c+1l; m <= sqrtN; m++) {

/* If m is a multiple of c */
if (m%c == 0) {

/* Mark m */
listl[m] = 1;

}
}
/* Run through each number bigger than c in
list2 */
for(m = L; m <= H; mt+)
{
/* If m is a multiple of C */
if (m%c == 0)
{
/* Mark m */
list2[m-L] = 1;
}
}

As in the serial and OpenMP code, we start by running through each number
less than sqrtN . The difference here is that we have two lists in which to mark
multiples instead of just one. We mark all the multiples less than or equal to
sqrtN in listl and all the multiples greater than sqrtN in list2 .

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 22

/* If Rank 0 is the current process */
if(r == 0) {

/* Run through each of the numbers in listl */
for(c = 2; ¢ <= sqrtN; c++) {

/* If the number is unmarked */
if(listl[c] == 0) {

/* The number is prime, print it */
printf("%$1lu ", c);

We are now splitting the code such that certain sections will be executed by
Rank 0 and other sections will be executed by the other processes. We do this by
surrounding the sections of code with if (r == 0) and else statements.
When the process encounters these statements, it will only execute the code that
matches its rank; so Rank 0 will execute the if (r == 0) section (since its rank,
r ,is 0), and the others will execute the else section.

Rank 0 is responsible for printing the prime numbers. The code above shows
how it prints the primesin 1listl .

/* Run through each of the numbers in list2 */
for(ec = L; c <= H; c++) {

/* If the number is unmarked */
if(list2[c-L] == 0) {

/* The number is prime, print it */
printf("%1lu ", c);

The code above shows how Rank 0 prints the primes from its own list2 .

Parallelization: Sieve of Eratosthenes

Aaron Weeden - Shodor Education Foundation, Inc.
Page 23

/* Run through each of the other processes */
for(r = 1; r <= p-1; r++) {

/* Calculate L. and H for r */
L = sqrtN + r*S + 1;

H = L+S-1;
if(r == p-1) {
H += R;

}

/* Receive list2 from the process */
MPI_Recv(list2, H-L+l, MPI_INT, r, O,
MPI_COMM WORLD, MPI_STATUS IGNORE) ;

Rank 0 is now ready to receive each 1list2 from the other processes. To
do so, it runs through each of their ranks. Based on the rank, it calculates the L
and H of the process just as the process calculated its own L and H . Itthen
uses the MPI_Recv () functiontoreceive 1list2 from the process. Letus
examine each of the arguments to this function, in order.

list2 ,the first argument, is known as the receive buffer. It is the area of
memory into which the message should be stored. This argument must be a pointer
to memory. This works for 1ist2 because we declared 1ist2 asa pointer to

The second argument is the size of the message being sent. In this case, we
want to send the entirety of 1ist2 , whose sizeis H-L+1 (this is the first reason
we needed to calculate L and H for the sending process).

The third argument is the MPI data type of the elements of the receiving
buffer. The elements of 1ist2 are of type , S0 we use the MPI data type
MPI_INT .

The fourth argument is the rank of the sending process. In our case, that
rankis r .

The fifth argument is the tag of the message. In MPI programs that use
multiple types of messages, it can be helpful to distinguish them using a tag, a
unique value that indicates what type of message is being received. We only have
one type of message in this program, so we just use the arbitrary value 0 for the
tag.

The sixth argument is the communicator of the processes that are sending
and receiving. In our case thisis MPI_COMM WORLD . Recall that this is also the
value we used for the MPI_Comm_ rank () and MPI_Comm size() functions.

The seventh argument is the status of the message. This reports whether the
message was received in error. It can be helpful to catch this value and take
appropriate action, but the value can also be ignored, as it is in this case, by using
MPI STATUS_IGNORE .

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 24

After this function has been called, Rank 0’'s 1ist2 will be replaced by the
list2 thatwasjustreceived fromrank r .

Quick Review Question
17. Assume we are Rank 3 and trying to receive a message in a custom
communicator called MPI_OUR_COMM from Rank 4. We want to receive

3 elements in an array called 1ist. The elements should be of type
MPI_FLOAT. We don't care about the status of the message we receive,
and the tag of the message should be 5. What would the call to

MPI Recv () looklike?

/* Run through the list2 that was just

received */
for(e = L; ¢ <= H; c++) {

/* If the number is unmarked */
if (list2[c-L] == 0) {

/* The number is prime, print it */
printf("%$1lu ", c);

Rank 0 can now print the prime values it just received from rank r . After
looping over all the processes, all of the prime numbers will have been received and

printed.

/* If the process is not Rank 0 */
} else {

/* Send list2 to Rank 0 */
MPI_Send(list2, H-L+l, MPI_INT, 0, O,
MPI_COMM WORLD) ;

The processes that are not Rank 0 simply send their 1ist2 sto Rank 0
using MPI_Send() . The arguments to this function are essentially the same as in
MPI Recv () . One notable difference is that the fourth argument of
MPI_Send() isthe rank of the receiving process, not the sending process. Itis
also worth noting that MPI_Send () does not have a status argument.

Parallelization: Sieve of Eratosthenes

Aaron Weeden - Shodor Education Foundation, Inc.
Page 25

The tags, MPI data types, and communicators of the MPI_Send () and
MPI Recv () functions mustmatch in order for the message to go through from
the sender to the receiver. The MPI_Send() function is a non-blocking call,
which means that the program will continue once the message has been sent. By
contrast, MPI_Recv () isa blocking call, so the program will not continue until
the message is received. Each MPI_Recv () must have a matching MPI_Send ()
, otherwise the program will hang.

/* Deallocate memory for list */
free(list2) ;
free(listl) ;

Since we allocated both 1istl and list2 , we need to deallocate them
using free () . Itisagood idea to deallocate memory in the reverse order it was

allocated to avoid freeing bytes of memory multiple times, which would cause an
error in the program.

/* Finalize the MPI environment */
MPI Finalize();

The last step before exiting is to finalize MPI. Just as we initialized MPI at the
beginning of the program using MPI_Init() , we finalize MPI at the end of the
program using MPI_Finalize() . Nomore MPI functions are allowed to be
called after MPI_Finalize () has been called.

The MPI code can be compiled using mpicc -o sieve.mpi
sieve.mpi.c —1m . Notethatwe are using mpicc in this case instead of gcc
mpicc isawrapperaround gcc thatincludes the MPI libraries and linkers.

To run the MPI program, we use the mpirun command. We pass this
command the number of processes with which we wish to run using the —np
argument. For example, if we wished to run the program with 2 processes, we
would use the command mpirun -np 2 ./sieve.mpi . We can still pass
sieve.mpi the —-n argumentin conjunction with mpirun . Confirm that the
program works for a few values of N and for multiple processes by using mpirun
-np <something> ./sieve.mpi -n followed by your choice of N . An
example of this is shown below.

$ mpicc -o sieve.mpi sieve.mpi.c -1m

$ mpirun -np 2 ./sieve.mpi -n 10

2 3 57
$ mpirun -np 4 ./sieve.mpi -n 50
2 35 7 11 13 17 19 23 29 31 37 41 43 47

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 26

$ mpirun -np 10 ./sieve.mpi -n 100

2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97

$ mpirun -np 1 ./sieve.mpi -n 1000

2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367
373 379 383 389 397 401 409 419 421 431 433 439 443
449 457 461 463 467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593 599 601 607 613
617 619 631 641 643 647 653 659 661 673 677 683 691
701 709 719 727 733 739 743 751 757 761 769 773 787
797 809 811 821 823 827 829 839 853 857 859 863 877
881 883 887 907 911 919 929 937 941 947 953 967 971
977 983 991 997

Hybrid Code

The Hybrid code is written by making the same small changes to the MPI
code that were made to the serial code to write the OpenMP code. In particular, we
parallelize the loops that can be run in parallel.

You can find these loops by searching the sieve.hybrid.c source code
for #pragma omp parallel for .

The hybrid code can be compiled using mpicc -fopenmp -o
sieve.hybrid sieve.hybrid.c -1m . Note that we are again using mpicc
, and that the -fopenmp argument has been added

The number of OpenMP threads used by the program can once again be
adjusted by changing the OMP NUM THREADS environment variable. We run the
hybrid program as we do the MPI program, using mpirun . Confirm that the
program works for a few values of N and for multiple processes by using mpirun
-np <number of processes> ./sieve.hybrid -n followed by your
choice of N . An example of this is shown below.

S mpicc —-fopenmp -o sieve.hybrid sieve.hybrid.c -1m

$ mpirun -np 2 ./sieve.hybrid -n 10

2 3 57

$ mpirun -np 4 ./sieve.hybrid -n 50

2 35 7 11 13 17 19 23 29 31 37 41 43 47

$ mpirun -np 10 ./sieve.hybrid -n 100
2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97
$ mpirun -np 1 ./sieve.hybrid -n 1000

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 27

2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

71 73 79 83

149
223
283
373
449
541
617
701
797
881
977

151
227
293
379
457
547
619
709
809
883
983

157
229
307
383
461
557
631
719
811
887
991

89 97 101 103 107 109 113 127 131 137 139

163
233
311
389
463
563
641
727
821
907
997

167
239
313
397
467
569
643
733
823
911

173
241
317
401
479
571
647
739
827
919

179
251
331
409
487
577
653
743
829
929

181
257
337
419
491
587
659
751
839
937

191
263
347
421
499
593
661
757
853
941

193
269
349
431
503
599
673
761
857
947

197
271
353
433
509
601
677
769
859
953

199
277
359
439
521
607
683
773
863
967

211
281
367
443
523
613
691
7877
877
971

Now that we have explored our source code we can determine how it will

scale. Students should complete Exercise 2, an attachment to this module.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.

Page 28

Scaling Discussion

Exercise 2 is likely to produce tables that look something like the following.
We have also included graphs of the data for the MPI and hybrid runs to show the
trends that occur when more cores are added.

Walltimes for Strong Scaling, Finding Primes Under 6,000,000

of | Total | Serial OpenMP MPI Hybrid
nodes | # of

used | cores

1 4 Om21.919s | Om2.839s | Om5.855s | Om3.718s
2 8 Om4.023s | Om2.817s
3 12 Om3.257s | Om2.447s
4 16 Om2.946s | Om2.341s
5 20 Om2.695s | Om2.228s
6 24 Om2.529s | Om2.198s
7 28 Om2.461ls | Om2.151s
8 32 Om2.466s | Om2.160s
9 36 Om2.425s | Om2.218s
10 40 Om2.357s | Om2.143s
11 44 Om2.369s | Om2.137s
12 48 Om2.354s | Om2.166s

There are a few things to notice from this data. First of all, the speedup is
dramatic when moving from serial to parallel: from 21 seconds to about 2 seconds
for about a 10x speedup. Note also that until about 20 cores, there is no advantage
to using MPI over OpenMP to achieve speedup for this problem size; at 20 cores, the
time to execute the MPI code drops below the time to execute the OpenMP code.

The hybrid code becomes advantageous even sooner, at about 8 cores.

A graph of the data is shown below.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.

Page 29

Walltimes for Strong Scaling,
Finding Primes Under 6,000,000

7

=0 MPI
= Hybrid

Walltime (seconds)

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of Cores

Note the trend of this graph: a dramatic decrease in walltime followed by a
much more level decrease. This is indicative of Amdahl’s Law. We are adding more
cores to the problem, but we are not seeing dramatic increases in speedup. In fact,
up to 48 cores, we have not yet seen the walltime dip below 2 seconds. This would
suggest that for this problem size, the serial regions of the code require about 2
seconds to execute in total. We can see a similar trend for larger problem sizes, as
indicated by the data and chart below.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 30

Walltimes for Strong Scaling, Finding Primes Under 50,000,000

of | Total | Serial OpenMP MPI Hybrid
nodes | # of

used | cores

1 4 o6m35.128s | 0Om56.825s | Im37.416s | Om51.900s
2 8 Om55.842s | Om30.146s
3 12 0m39.880s | Om21.666s
4 16 0m30.621s | Om18.937s
5 20 0m25.549s | Om15.216s
6 24 Om21.532s | Om14.512s
7 28 Oml18.702s | Om1l2.279s
8 32 Oml18.517s | Oml1.798s
9 36 Oml6.845s | Oml2.258s
10 40 Oml6.689s | Omll.605s
11 44 Oml14.780s | 0Om10.202s
12 48 Oml4.065s | 0m9.820s

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 31

Walltimes for Strong Scaling,
Finding Primes Under 50,000,000

120

100 <‘\

=0—MPI
\ =—Hybrid

[ee]
o

Walltime (seconds)
8 g

20

0 T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48

Number of Cores

Below are example data and a graph for the weak scaling part of Exercise 2.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 32

Walltimes for Weak Scaling, Finding Primes Under 1,000,000 * Number of

Cores

of | Total | Finding Serial OpenMP MPI Hybrid
nodes | # of | primes

used | cores | under

1 4 4,000,000 | Oml10.616s | Oml.598s | Om3.790s Om2.569s
2 8 8,000,000 Om5.398s | Om3.589s
3 12 12,000,000 Om6.390s | Om4.198s
4 16 16,000,000 Om7.572s | Om5.059s
5 20 20,000,000 Om8.246s | 0m5.493s
6 24 24,000,000 Om8.699s | Om6.020s
7 28 28,000,000 Om9.342s | O0m6.621s
8 32 32,000,000 Om10.601s | Om8.283s
9 36 36,000,000 Oml1.346s | 0m7.822s
10 40 4,000,000 Om12.075s | Om8.423s
11 44 44,000,000 Oml12.660s | Om8.801s
12 48 48,000,000 Om13.520s | 0m9.404s

Keep in mind that with weak scaling we are increasing the problem size
proportionally to the increase in the number of cores. Because of communication
overhead between the processes, the walltime will gradually increase as we add
more cores. This is visible in the slow upward trend of the graph below.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 33

Walltimes for Weak Scaling,
Finding Primes Under
1,000,000*number of cores

—_
)

-
S

[N
[\

[N
o

=0 MPI
6 =—Hybrid

Walltime (seconds)

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of Cores

We can solve problems ranging from sizes of 4,000,000 to 48,000,000 using
4-48 cores in under 14 seconds for MPI and in under 10 seconds for Hybrid. If we
draw the trendline for each of the curves, we see that it takes roughly an extra 0.2
seconds per core for MPI and roughly an extra 0.15 seconds per core for Hybrid.
This gives us an idea of how the problem scales, and about the general trend of the
MPI program versus the Hybrid program. Ideally, these lines would be flat, but
communication overhead forces them to have a gradual trend upward.

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 34

Student Project Ideas

1. Explore strong scaling of the MPI and Hybrid codes for different problem
sizes. Is it true for each problem size that at 20 cores MPI becomes more
advantageous than OpenMP? That at 8 cores Hybrid becomes more
advantageous than OpenMP? See if you can find the problem size for
which it is most advantageous to use MPI over OpenMP (the one for
which it requires the fewest cores for MPI to be faster than OpenMP) by
adjusting the problem size and observing the results. Do the same for
Hybrid over OpenMP.

2. Gather walltime data for the serial and OpenMP versions of the code for
each of the problem sizes in the weak scaling exercise. Graph the data for
serial, OpenMP, MP], and Hybrid. Perform a regression analysis on each
set of data to determine the slope of each trend line. How does this value
differ for each line? What does this tell you about the scaling of each
version of the code?

Parallelization: Sieve of Eratosthenes
Aaron Weeden - Shodor Education Foundation, Inc.
Page 35

