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Abstract

We describe our experiences with curriculum development and learning assessment in a new undergraduate com-
putational science program. We report on the development and pilot testing of assessment tools in both core and
cognate courses. Specifically, we detail a diagnostic assessment that predicted success in our introductory compu-
tational science course with reasonable reliability; we give an account of our use of an existing assessment tool to
investigate how introducing computational thinking in a cognate course influences learning of the traditional course
material; and we discuss developing a pancurriculum rubric for scoring computational science projects.
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1. Introduction

As an emerging discipline, computational science does not yet have a customary undergraduate curriculum.
Progress has been made in identifying core competencies [1, 2]. In addition, the way in which coursework is ap-
portioned among existing disciplines and the extent to which courses overlap has been analyzed [3]. A handful
of textbooks written specifically for computational science courses have appeared or are scheduled to appear soon
[4, 5, 6, 7, 8]. The content of newly developed courses in computational science depends on determining which
core competencies are not being adequately developed in cognate courses already offered in traditional majors. The
shortfalls that are identified are met both by distributing the topics in the new courses introduced with the major and
by renovating existing cognate courses where possible.

The New Jersey Commission on Higher Education approved a major in computational science at Stockton in
February 2006; the entering class of Fall ’07 was the first cohort that was able to select the major. The second author
has taught CPLS 2110 (Introduction to Computational Science) each fall semester since Fall ’07 and also taught the
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course in Spring ’07 in preparation for the formal initiation of the major that fall. Enrollments in CPLS 2110 prior
to Fall ’09 were quite small; the first two undergraduate computational science degrees will be awarded during the
2010-2011 academic year.

The Computational Science (CPLS) program at Stockton has close ties to the Physics (PHYS) program. Therefore
an early opportunity to expand the computational content of cognate courses came when CPLS faculty were asked to
teach the classical mechanics course that is a standard part of the undergraduate physics major. The course was duly
renamed PHYS 3220 (Computational Mechanics) and taught by the first author in Spring ’08 and ’09.

2. Motivation

2.1. The Need for Assessment: CPLS 2110

The major will take root to the extent that science, mathematics, and computer science majors see the introductory
courses as electives that add value to their curricula. In other words, computational science programs must embrace
the role of providing service courses to larger, longer-established majors. This is neither new nor unique. Chemistry
serves biology, physics serves chemistry and biology, and mathematics serves physics, chemistry and biology.

In the Fall ’08 semester, we made a concerted effort to expand the audience of CPLS 2110 beyond CPLS majors.
We replaced first-semester calculus as a co-requisite with pre-calculus as a pre-requisite at the request of colleagues in
the Environmental Science program. Subsequent discussions among the CPLS faculty highlighted the importance of
developing an assessment tool that would give an early warning to students needing to remediate basic mathematics
skills.

2.2. The Need for Assessment: PHYS 3220

PHYS 3220 focuses on Newtonian mechanics at a medium to advanced level. In Spring ’08 the first author
introduced a sequence of computational projects involving mechanics problems of increasing difficulty. The projects
ranged from modeling projectile motion to modeling motion of connected multiple rigid bodies (a complete list is
given in Table 1).

Table 1: Topics of the projects in PHYS 3220 and the associated computational concepts.

topic computational concept

motion of a projectile solving ODEs using Euler’s method

motion of an object sliding down
an inclined plane with friction and
bouncing against a spring

limitations of Euler’s method and solving ODEs
using Runge-Kutta methods

motion of a satellite orbiting Earth long-time accuracy of numerical ODE solvers

motion of a rigid body multiple model realizations for optimization and
simulation

motion of multiple connected rigid
bodies

solving stiff DAEs

Does renovating an existing course by taking a computational approach detract from the traditional content, which
is after all the raison d’être of the course? This question motivated a study utilizing the Force Concept Inventory (FCI)
[9], a well-established tool that assesses mechanics knowledge, to look at whether student understanding was affected
by the increased emphasis on computational thinking.
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2.3. Embedded Assessment: A Pancurriculum Rubric

CPLS faculty make extensive use of projects in both CPLS and cognate courses. Project work reflects current
best practice in computational science education [1, 2]. Reports for computational science projects tend to follow a
standard model across the curriculum regardless of who teaches the course. Broadly speaking, they include an intro-
duction, model description, model testing, model application and a conclusion. The first author decided to develop a
rubric for computational science projects for use in PHYS 3220.

Concerns about the granularity of both the categories and the scoring scale of the rubric have led the authors
to collaboratively design a more robust rubric which could be used across the computational science curriculum.
A decided benefit of a pancurriculum rubric is that it reinforces a student’s computational skills through consistent
emphasis on core competencies throughout the four years of undergraduate study.

3. Methods

3.1. Tools for Assessment: CPLS 2110

The second author designed a brief assessment of basic skills that was administered on the first day of the Fall ’09
semester. Questions gauged geometric understanding of the meaning of the slope and y-intercept of a straight line;
recognizing common functions (mx + b, sin x, and ex) when plotted as data sets as they might appear if obtained as
experimental results (i.e., with noise); and associating a (global) minimum, a (local) maximum, a point with positive
slope, and a point with negative slope on the graph of a function with labels describing the rate of change as smallest
in magnitude, largest in magnitude, positive and negative.

On the first and last days of the semester students completed a survey, shown in Table 2, aimed at ascertaining their
experience with and attitudes toward computing. Questions are paired in the survey, asking first about coursework in
general and second about math and science coursework in particular. Responses were on a seven point Likert-style
scale, with 1, 4 and 7 corresponding to never, sometimes and regularly, respectively.

Table 2: Survey questions about experience with and attitudes toward computing. Odd-numbered questions Q1, Q3, etc. omit the words in
parentheses; even-numbered questions include them.

(Q1,2) How often have you used a computer when doing an assignment in a (math or science) course?
(Q3,4) How often have you used spreadsheet (e.g., Excel) software in a (math or science) course?
(Q5,6) How often do you use a computer, even if it is not required, to do an assignment in a (math or science) course?
(Q7,8) How often have you found that using a computer helped you understand a concept in a (math or science)

course?

3.2. Tools for Assessment: PHYS 3220

The FCI [9] is a tool developed to help assess facility with and misconceptions about Newtonian thinking as a
way to explain motion and its causes. It consists of 30 conceptual questions in multiple choice format and has been
extensively studied and promoted [10]. Given its widespread use, the first author chose to administer the FCI to see
whether undertaking the aforementioned computational projects (Table 1) was fostering the ability to apply Newtonian
thinking to problems in mechanics. We expected that implementing computational models of various mechanics
problems and analyzing the results with graphing and visualization tools (e.g., movies in MATLAB) would be an aid
to understanding the mechanics concepts.

The FCI was administered twice in Spring ’09, once at the outset of the course and again at the end. Results of the
FCI were not included in the final grade, so the assessment was of low stakes. To further alleviate test anxiety, the FCI
was administered in such a way that the instructor was able to pair the results without identifying individual students.
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3.3. Tools for Assessment: A Pancurriculum Rubric

The aforementioned rubric was first used in PHYS 3220 in the Spring ’09 semester and contained six categories
(accuracy, learning and understanding, narrative, introduction, analysis and conclusion). Each category was assigned
a number from 0 to 3, giving a total score that ranged from 0 to 18. Despite providing a somewhat more objective way
of assessing computational science projects, the rubric was often found to be too coarse-grained. Since the second
author was assigning projects in CPLS 2110, the idea of developing a robust pancurriculum rubric arose.

The authors worked together to modify the original rubric, subdividing the categories to provide a more fine-
grained instrument. The modified rubric had 18 categories evaluated on a 0–10 scale, giving a maximum possible
score of 180. Table 3 contains a sample category. To test the modified rubric the authors created a pool of ten
exemplary projects, five each from the most recent instances of CPLS 2110 (Fall ’09) and PHYS 3220 (Spring ’09).
This pool was then graded by both authors.

Table 3: Example rubric category. The scale is labeled by the category name and followed by guidelines describing excellent (9–10, A range), good
(7–8, B range), satisfactory (5–6, C range), and poor (0–4, D and F range) work.

model
construction

�10 �9 �8 �7 �6 �5 �4 �3 �2 �1 �0
The flow of information in the model is easily followed in an excellent project, is followed with some effort in a
good project, is followed only with significant effort in a satisfactory project, and is followed only with considerable
difficulty in a poor project.

4. Results and Discussion

4.1. Assessment Outcomes: CPLS 2110

14 of 17 students (82%) answered questions about slope and y-intercept of a line correctly. Given “noisy” data
following exponential, linear, and sinusoidal trends and equations for each function, 14 of 17 students (82%) correctly
matched the exponential data and function, 13 of 17 students (76%) correctly matched the linear data and function,
and 16 of 17 students (94%) correctly matched the sinusoidal data and function. Of the seven students who answered
one or more of these questions incorrectly, three withdrew from the course almost immediately, one withdrew early
in the semester, and the remaining three obtained the three lowest course grades.

On the question involving rates of change and slope at a point on a curve, 13 of 17 students (76%) identified the
minimum with a slope of smallest magnitude and 2 of 17 students (12%) identified the maximum with a slope of
smallest magnitude. Just 4 of the 13 students selecting the minimum realized that the maximum should be likewise
identified, and neither of the two students selecting the maximum realized that the minimum should be likewise iden-
tified. Although the question clearly stated that more than one point could be associated with a label, it is likely that
habit built from years of test taking caused students to answer this question quickly rather than carefully. Redesigning
the question to ask students to rank the rate of change at each point may provide better information. 10 of 17 stu-
dents (59%) correctly identified the function as having a positive rate of change at the point with positive slope and
a negative rate of change at the point with negative slope. Several incorrect responses appear to be due to differences
between the slopes at the labeled points being insufficiently pronounced; a graph with more distinct features will be
used in subsequent versions of the assessment.

Figure 1 demonstrates that course grade correlates well with the score on the diagnostic assessment. One student,
represented by the open circle, fared considerably worse in the course than performance on the diagnostic would
imply. The diagnostic provides relatively little resolution at the top end of the scale, as indicated by the clustering
of points at diagnostic scores above 90. The self-assessments revealed by the survey of Table 2 were not positively
correlated with course grade.
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Figure 1: Course grade versus diagnostic score. There is a strong correlation (r = 0.91) between the diagnostic score and the course grade,
indicating that the diagnostic is a useful predictor of success in CPLS 2110.

4.2. Assessment Outcomes: PHYS 3220

We present the sorted differences between after and before FCI scores in Figure 2. Nine pairs of tests were
collected. Although two students appear to have diminished facility with Newtonian thinking, the majority (seven)
appear to have benefited from the course and from the computational projects. A paired t-test indicates that the
improvement is significant at the 90% confidence level. As used here, the FCI indicates that including computational
projects in a mechanics course (a computational science cognate) does not detract from learning mechanics concepts
and appears to help most students.
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Figure 2: Change in FCI score. Nine students completed the FCI assessment at the beginning and end of PHYS 3220 in Spring ’09. Seven of the
nine scores increased; the difference in scores (before − after) is significant at a 90% confidence level according to a paired t-test.

The small sample size is certainly of statistical concern; however, this is a problem for computational science
assessment not only now, owing to low enrollments in courses in this new field, but also likely in the future, owing to
the relatively small class size imposed by the necessity of teaching in computer classrooms. Further work is required
to tease out how much understanding is gained from the computational project work versus other course activities.

4.3. Assessment Outcomes: Test-driving the Pancurriculum Rubric

We are not aware of any other pedagogical studies in computational science wherein two individual faculty mem-
bers compare their grading of the same student material in a systematic way and this makes the results particularly
interesting. Considering that students in the two courses were given independent guidelines for their projects without
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reference to the rubric, the correlation (r = 0.63) between the total scores we assigned to the ten projects is reassuring.
We selected the same project as best and identified the same two projects as least accomplished. Moreover, we con-
curred on four of the top five projects and four of the bottom five projects. We evaluated two projects near the middle
of the score distribution rather differently. The correlation between our rankings is fairly strong (r = 0.76), which is
significant at the 98% level (p = 0.02; two-tailed t-test). This lends support to the notion that experienced teachers of
computational science can spot good and bad projects “at a hundred paces”.

When scores for all categories and all projects are compared in a two-tail t-test, the p-value is 0.19. This indi-
cates that we cannot conclude with confidence that the scores are drawn from different populations, i.e., there is no
significant difference overall in the grades we assigned when all categories are integrated. This provides some jus-
tification for the idea of different instructors using this project rubric in different computational science courses. As
noted previously, the advantage of such a policy is that students find best practices and skills for their discipline being
reinforced over the four years of their computational science education.

Delving more deeply into the data reveals some differences. We consider individual categories of the rubric for
which our scores are not well correlated as having ambiguously defined criteria. The refinements that have resulted
from this closer analysis are shown in Figure 3 and Table 4 in the following section.

5. Next Steps

The process of developing a computational science curriculum and the supporting assessment tools has been a
thought-provoking and illuminating experience, and we encourage others in the wider computational science commu-
nity to undertake similar projects if they have not already done so. Definite next steps for each of the three initiatives
described in this manuscript are already underway.

(1) The diagnostic assessment developed for CPLS 2110 shows promise as an indicator of preparedness for begin-
ning study in computational science. Reflecting on student work from the Fall ’09 semester, facility with units
seems to be a discriminator that is not currently part of the diagnostic. Before using the diagnostic in Fall ’10,
we will incorporate this topic and make the modifications mentioned in section 4.1.
We intend to use the CPLS 2110 diagnostic as the foundation for a series of assessments of increasing sophis-
tication for use in all of our courses, including those at the graduate level. The development and testing of this
computational thinking inventory will be a large component of our future work.

(2) The use of the FCI assessment tool in PHYS 3220 has yielded some interesting, albeit preliminary, results.
Some concepts the tool examines are more closely tied to the computational projects in the course than others.
We will lump the questions into groups by concept and analyze the results at this medium-grained level with a
view toward extracting more information about the influence of computational thinking on cognate learning.

(3) We plan to further test and refine the pancurriculum rubric and advocate for its adoption in all CPLS courses
and in any cognates for which it is appropriate. The first author will be teaching PHYS 3220 and the second
author will be teaching PHYS 3352 (Nonlinear Systems), another cognate course, in Spring ’10. Projects will
be an integral part of both courses. We will include the rubric as part of the instructions to our students for
their projects and we will grade the projects jointly (i.e., we will effectively be team-teaching these courses
with regard to project evaluation). We will gladly provide the current version of the rubric to anyone in the
computational science community who wishes to contribute to its further testing and refinement.

Our most immediate efforts involve sharpening the use of the FCI and testing the pancurriculum rubric. Table 4
contains the categories of the refined pancurriculum rubric and the criteria by which each category is evaluated. Most
categories are rated from excellent (A) to poor/failing (D/F), with excellent corresponding to 9–10 and poor/failing
to 0–4. Exceptions are “distinctive features” and “degree of difficulty”. We include them to give the rubric a bit of
open-endedness so that it does not become merely a checklist when used by students. We envision using these two
categories to distinguish good from excellent work.
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Figure 3: Evolution of the pancurriculum rubric. Categories are arranged in columns corresponding to the original rubric (first column, Sections 2.3
and 3.3), the expanded rubric (second column, Sections 3.3 and 4.3), and the rubric after further refinement (third column, Sections 4.3 and 5).
Arrows between columns show the elaboration and merging of categories as the rubric evolved. Categories in the current rubric are constellated
into the supercategories to the far right.
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Table 4: Pancurriculum rubric categories and evaluation criteria.

subject
mastery

An excellent project demonstrates complete mastery of the subject material and has no technical
mistakes. A poor project has major conceptual misunderstandings or several technical errors.

awareness of
limitations

Full awareness of the limitations of both the model and the methods is evident in an excellent
project; a list of situations in which the model should not be used is included. At most, a poor
project mentions only briefly limitations of either, but not both, of the model or the method.

integration of
math and science

An excellent project links, through equations and narrative, the mathematical and physical
concepts. A poor project makes at best a minimal attempt to link the mathematical and physical
concepts.

critical
analysis

In an excellent project all results are scrutinized in view of known limitations of the model and
method; results are neither oversold nor undersold. One or more results are accepted unques-
tioningly in a poor project.

data
visualization

Figures in an excellent project have accurately labeled axes, an appropriate choice of point
markers and line styles, clearly distinguished data sets, accurate captions that highlight the
most distinctive features of the data, effective use of color, minimal whitespace, and minimal
clutter. Many aspects of the figures in a poor project can be improved. Figures with unlabeled
axes or multiple data sets that are not distinguished ensure that this aspect of the project will be
rated as poor.

model
construction

In an excellent project, the rationale behind the model and how the model works is lucid and
unambiguous. In a poor project, it is not clear how or why the model works, even if it does
provide plausible answers.

model
integrity

The accuracy of the model as well as its fidelity to applicable scientific laws, exact solutions and
mathematical or experimental benchmarks is demonstrated in an excellent project. The model
is shown to produce accurate results in no more than the simplest of cases in a poor project.

documentation The documentation accompanying an excellent project allows another modeler with similar
experience to use or modify the model after reading the documentation. A poor project does
not describe how to use the model or has uncommented code.

distinctive
features

Any of several features distinguish an excellent project from a good project. Examples of such
features include especially thorough analysis of model integrity, particularly effective figures,
unusually insightful discussion of model limitations, perceptive identification of further ques-
tions that the model might be used to answer, and identification of modifications required to
make the model more broadly applicable.

degree of
difficulty

Any of several traits differentiate a difficult project from an easy project. Projects that involve
investigating a system of greater complexity than that of a typical homework problem, compar-
ing results obtained from more than one method, or using a method not discussed in class all
qualify as difficult. A project that requires effort equivalent to a homework problem is an easy
project.

introduction An excellent introduction engages the reader even if he or she is not knowledgeable about the
problem at hand. A poor introduction deters the reader from reading further.

results and
discussion

The results and discussion section of an excellent project guides the reader through the key
results and explicitly refers to the figures and tables in support of the analysis; in a poor project,
key results are omitted from the results and discussion section or no reference is made to the
figures and tables.
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Table 4: Pancurriculum rubric categories and evaluation criteria (continued).

conclusion The conclusions section of an excellent project accurately and concisely summarizes the key
results and includes cross-references to relevant parts of the results and discussion section. The
conclusions section of a poor project gives an inaccurate account of the results.

bibliography The bibliography of an excellent project contains accurate references to the specified number
of authoritative sources. The bibliography of a poor project consists of only the course text.

spelling An excellent project contains no errors that spellchecking the document would detect and no
more than two spelling errors per page of text. The spelling errors in a poor project are so
numerous that the reader is distracted from the content.

grammar An excellent project contains no more than one grammatical error per page of text. The gram-
matical errors in a poor project are so numerous that the reader is distracted from the content.

word usage In an excellent project, word use is apt and enhances the presentation. Words are used incor-
rectly and phrasing is immature in a poor project.

formatting In an excellent project, equations are typeset and figures and tables are integrated at appropriate
points in the manuscript. Handwritten equations or figures and tables gathered at the end of the
manuscript are characteristic of a poor project.
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