
Parallelizing Conway’s Game of Life

Samuel Leeman-Munk & Tiago Damasceno

November 4, 2010

Abstract

A brief explanation of Life and its parallelization. Lab included.

Contents

1 Background 2

1.1 Examples of patterns . 2

1.2 Rules . 2

2 Implementation 3

3 Parallelization 4

4 Files 5

5 Compiling & Running 5

6 Command Line Options 6

7 Output 6

8 Laboratory 7

8.1 Prerequisites . 7

8.2 Materials . 7

1

8.3 Procedure . 7

8.4 Questions . 11

8.5 Assessing Student Understanding . 12

1 Background

Game of Life is a cellular automaton formulated by the British mathematician, John

Orton Conway in 1970. This “game” does not require any players. The user just sets

up the initial configuration and leaves the game to evolve on its own. Conway invented

Life as a simplification of a much more complex model by John Von Neumann. Von

Neumann had invented his automaton in a search for a hypothetical machine that could

build copies of itself, and Conway’s Life can do the same. What particularly interests

the computational community is that Life is Turing Complete, meaning it can compute

any algorithm that a conventional computer can. Life and other cellular automata are

famous for their “emergent behavior,” The process by which elaborate patterns and

behaviors can emerge from very simple rules.

1.1 Examples of patterns

Many patterns have been discovered over the years. Still lives are simple static patterns

that do not change, such as blocks, beehives, loaves and boats. Oscillators are a

superset of still lives. They cycle in between shapes and never die. These include

blinkers, toads, beacons and pulsars. A particular type of oscillator is the Spaceship.

A spaceship pattern is so named because as it oscillates it translates itself across space

(the board). One of the most well-known life patterns, the glider, is a famous spaceship.

There are many other pattern types, such as Methuselahs, Guns, Puffers and Rakes.

1.2 Rules

Conway’s game of Life revolves around 4 simple rules:

2

1. Any living cell with less than 2 live neighbors dies, as if it was caused by under-

population.

2. Any living cell with more than 3 live neighbors dies, as of it was caused by over-

population (overcrowding).

3. Any living cell with between 2 and 3 neighbors lives on to the next generation.

4. Any dead cell with 3 living neighbors will be “born,” or become alive.

2 Implementation

Life the computer program consists of a small loop that repeatedly operates on a two-

dimensional array. For each step, a loop goes through each column, and decides the

new state of each cell in the column one at a time. Then all the cell changes are applied

at once, and the loop starts again.

Note that in deciding the new cell state, the program does not immediately change

the cell to the new state. If it did, the cell processed next would change based on the

new state rather than the original state. This would not accurately reflect Conway’s

game of Life, which assumes all the cells change state simultaneously. The new values

of the cell states are stored in another two-dimensional array and copied1 over to the

original array at the end of each iteration.

The theoretical Game of Life takes place on a board of infinite size. In order to

best approximate an infinite game board, Life wraps at the edges. To allow the cells to

interact with each other across the edges of the board, Life pads the main array with

an extra layer of invisible cells. Between iterations, these cells are simply updated with

their corresponding cells on the other side (e.g. the invisible cells past the leftmost

border map to the visible cells at the rightmost border).

Each cell in Conway’s game of life needs to know the states of its eight neighbors

and itself. That’s nine cells, no matter how many cells the whole board contains. Thus,

1Do they have to be copied? Those advanced programmers among you, what might be a more efficient
way to handle this?

3

the required computations are directly proportional to the number of cells, i.e. Life

scales linearly (O(n)).

3 Parallelization

Life is an instance of the structured grid Dwarf of Berkeley’s thirteen dwarfs [1].

Weather simulations are another example of a structured grid dwarf. In particular,

Life is a 2D grid in which each cell is concerned only with its direct neighbors, a simple

instance of its dwarf. Distribution of labor in a structured grid Dwarf like Conway’s

Game of Life is simply a matter of splitting the board’s cells among the threads. Of

course, the most intuitive way for a human to split a structured grid into pieces is to

break it into chunks of approximately equal size and of the same shape as the original

grid. More intuitive to program, however is to slice the grid into rectangles, giving

each thread a set of rows or columns to evaluate (Why do you think this is?).

Once the board is divided, work continues much in the same way as serial. In shared

memory, border cases are trivial, and in distributed memory either each slice receives

an “invisible” border of the cells that border it under the control of other processes,

or each process receives its own complete copy of the current array at the beginning

of each iteration2. Like any structured grid Dwarf, Life is tightly coupled. Because

each iteration requires a rebroadcast of the current board, a process that gets to the

end of an iteration first must wait for all the other processes to complete that iteration

before it can continue. If the entire board is broadcast to each process, communication

required for Life is proportional to both the number of cells (the problem size) and the

number of processes, making Life relatively communication heavy. Being an extremely

simple model with no potential for roundoff error, Life sacrifices no precision in its

parallelization.

4

4 Files

Makefile Contain instructions to compile the Game of Life automatically, connecting

all the necessary files, flag and etc.

Life.c Initializes Life object which contains all the variables used in this program.

This file also has a loop that runs through N-Generations. The loop contains all

the instructions (function calls) to run one generation of the simulation.

Life.h Maintains all the relevant functions used by Life.c

Defaults.h This file contains the definition of all the variables, used in the program:

XLife.h Contains all the necessary functions to create a X11 window that display the

right number of rows and columns based on the information that is set on the

other Life files. “Dot in” files (*.in) This type of file contains X and Y coordinates

for all the alive cells and also the dimension of the world. The first two numbers

in the first line is the world’s X and Y dimensions in which the simulation of

Life will occur. The other pair of numbers on the lines below are the X and Y

coordinates for all the alive cells. These files can be used as inputs for the Game

of Life.

5 Compiling & Running

Before running the program you must build it. Make sure to be in the relevant folder,

and type the command “make Life”, in the terminal window. This command will cre-

ate an executable file named Life. To run the program use “./Life [Rows] [Columns]

[Generations] [Display]” or use “./Life” combined with the Command Line Options

described below. For information on automatically generating scaling and paralleliza-

tion graphs for Life, please refer to the UPEP module Multidimensional Benchmarking

with PetaKit.

5

6 Command Line Options

-h|--help The help page.

-c|--columns number Number of columns in grid. Default: 105

-r|--rows number Number of rows in grid. Default: 105

-g|--gens number Number of generations to run. Default: 1000

-i|--input filename Input file. See README for format. Default: none.

-o|--output filename Output file. Default: none.

-t[N]|--throttle[=N] Throttle display to Ngenerations/second.Default:100

-x|--display Use a graphical display.

--no-display Do not use a graphical display.

7 Output

When utilizing X11 the output should resemble the picture on the right. There are

examples of patterns in the program’s folder, such as the Oscillators, Gosper Glider

Gun and etc. To visualize the examples use the “-i” option (input file). If the output

file option is used, a file will be created with the X and Y coordinates of the cells that

are alive at the last generation simulated.

6

8 Laboratory

8.1 Prerequisites

• Prior experience using UNIX command-line interface.

• Knowledge of how to use an accessible parallel processing environment2

8.2 Materials

• Computer (1 per student)

• Parallel Processing Environment3

• UPEP Life Module

8.3 Procedure

1. From Multidimensional Benchmarking with PetaKit take the StatKit zip file4 and

unpack it into the directory where the folders with your source code are.

2. In each source code directory, run the following command:

make

This will build your executables.

3. If you are running on a cluster that requires a scheduler, construct a template for

submitting jobs to the scheduler5. Making a script template is as simple as filling

in all the directives you’ll want to be passed to your scheduler, for the values that

will change substituting variables specified in the StatKit documentation (perl

2In other words, do not attempt this lab unless you or someone with whom you are working can access a
parallel machine that he or she can use. This includes but is not limited to clusters and multicore personal
computers. Be aware that cluster computers are highly complicated devices, and most of the commands
coming up will not work if you just copy them directly into your command line. In short, Read the
instructions carefully.

3A cluster is ideal for this purpose, but if one is not available, nearly all modern computers have at least
two cores, which can serve as a very small-scale parallelization environment

4https://shodor.org/media/content//petascale/materials/UPModules/pkit/StatKit.zip
5If you don’t know how to submit jobs to your scheduler, speak with someone who does

7

stat.pl –help). Make sure to include in your script where appropriate $special

$prep and $main, in that order and each with its own line. These form the main

command that actually runs your program. If you still don’t understand, try

looking at the existing templates in the script templates directory to get a better

idea of the format, and remember the StatKit documentation.

4. Save your template in the StatKit folder in the script templates directory. Re-

member what you named your template. We will refer to it as “myTemplate.sh”.

We’ll be referring to your cluster’s scheduler as myScheduler, also.

5. Now you’re ready to begin making performance scaling graphs!

Serial:

Scale the serial code, running over several problem sizes and collecting the times.

In the StatKit folder(stats), run the following command:

perl stat.pl --cl ‘../GoL_Serial/Life -r 10 -c $problem_size -t 1000 --no-display’ \

-t <myTemplate.sh> --problem_size 100,1000,10000,50000,100000 \

--repetitions 5 --proxy-output --tag mySerialLife \

--scheduler <myScheduler>

Remember to replace values in angle brackets (<>) with values appropriate to

your cluster!

problem size is the most significant variable in a program. The problem size is,

in general, the variable that has the greatest effect on runtime. For instance, in

Life the problem size is the number of cells. Strictly speaking, this command to

StatKit presents the problem size as a tenth of what it actually is6. The current

version of StatKit doesn’t support arbitrary functions in templates, so this is a

programmatic convenience that will not affect results.

Repetitions decides how many times you’ll run at each problem size. Proxy output

simulates the PetaKit output so the user doesn’t have to program it into his or

her program to be benchmarked.

6why?

8

While you wait for these runs to complete, consider what sort of scaling you will

expect. Scaling is how the runtime of a problem changes as one increases some

part of it. In this case, you’re scaling over problem size.

Once all the runs are finished, return to your main directory and run:

perl PlotKit.pl \

--independent problem_size --dependent walltime \

--datafile stats/output.txt -o mygraph.ps mySerialLife

StatKit outputs its results into a file called output.txt. Output.txt remembers the

variable names so you don’t have to remember which column they’re in. Take a

look at output.txt to see how it’s layed out. PlotKit.pl collects the relevant data,

averages repeats and builds a graph. Independent and dependent should be self-

explanatory, they decide which variables populate the x and y axes respectively.

The last option must always be the tag(s) of the runs you want to see.

In whatever way you can on your machine, look at mygraph.ps7. If you can view

graphical output directly on your machine, feel free to omit the ‘-o mygraph.ps”

option to get a graph sent directly to your screen.

Shared Memory Parallelism:

Now that we have some parallelization, we’ll scale Life varying the number of

that can be used on one machine. Because multiple cores on a single processor

share the same memory, this is known as shared memory parallelism.

Be aware that if you are not running through a scheduler you will need to define

OMP NUM THREADS to externally restrict the number of threads a shared

memory parallel program uses. The “–special” argument will let you do this. In

Bourne Again SHell (BASH), the value you’ll want to give it is as follows:

--special ‘OMP_NUM_THREADS=$threads’

In the StatKit folder(stats), run the following command:

7If your computer can’t handle .ps, try ps2pdf, or for Windows GhostScript
http://pages.cs.wisc.edu/ ghost

9

perl stat.pl --cl ‘../GoL_OpenMP/Life -r 10 -c $problem_size -t 1000 --no-display’ \

-t <myTemplate.sh> --problem_size 100,1000,10000,50000,100000 --threads 1-4\

--scheduler <myScheduler> --repetitions 5 --proxy-output --tag myOmpLife

perl PlotKit.pl \

--independent threads --dependent walltime --split problem_size \

-o mygraph.ps --datafile stats/output.txt myOmpLife

Notice the new ”split” option, which allows us to ”split” a graph into a different

graph for each value of a variable. Observe your graph. How does the problem

scale over the number of threads? How does the scaling change with respect to

problem size? What does this tell you about parallel processing?

Distributed Memory Parallelism:

Now we’ll compare distributed and shared parallelism. With pure distributed

parallelism each thread gets its own processor.

Distributed Memory implementation is more challenging because it depends more

heavily on cluster implementation. The following command is just an example,

and you may need to work with your cluster manager to figure out the correct

command-line template.

perl stat.pl \

--cl ‘mpirun --bynode -np $processes --hostfile <myHostFile> \

../GoL_MPI/Life -r 10 -c $problem_size -t 1000 --no-display’ \

-t <myTemplate.sh> --problem_size 100000 --processes 1-8\

--scheduler myScheduler --repetitions 5 --proxy-output\

--tag myMPILife

For comparison, generate some more shared memory data.

perl stat.pl --cl ‘../area-omp 0 1 $problem_size’ \

-t myTemplate.sh --problem_size 100000 --threads 1-4 --scheduler myScheduler\

--repetitions 5 --proxy-output --tag myOmpLife2

10

perl PlotKit.pl \

--independent threads --dependent walltime --split tag \

-o mygraph.ps --datafile stats/output.txt myOmpLife2,myMPILife

To graph more than one tag, combine them with commas. In this example we

then split over tag to compare the two runs. Notice that although MPI uses

processes, PlotKit.pl still refers to the output as threads. For purposes of parsing

convenience, StatKit always outputs the number of units working on a problem

as threads.

From this graph, what do you notice about distributed memory parallelism as

compared to shared memory parallelism? Why do you think this is? What

advantages do we get for distributed memory parallelism?

8.4 Questions

1. In Shared memory, what problem size does Life need for a distinct shape to appear

when scaling over the number of threads?

2. Does Life scale differently with different shapes of board? Would setting columns

at 10 and varying the number of rows give a significantly different result? What

about a square board? Test your hypotheses.

3. What shape of graph would you expect if you varied the problem size proportion-

ally to the number of processes or threads?

(a) Try it, run OMP or MPI stats again with –pfunc linear and –tag ‘weak

scaling’ Don’t forget to use PlotKit.

(b) What shape did you get?

4. Does the content of the board affect the runtime of Life? Try using one of the

provided input files to find out.

5. Given your scaling information, which version of Life is best in which situation?

For instance, Which runs most quickly when only one core is available? What

11

about when several cores are available, but each core is on a different compute

node? Explore, and explain your findings.

8.5 Assessing Student Understanding

A student that has or can quickly generate performance graphs for each parallel version

of AUC and can answer all of the questions above has gained full understanding of this

lab.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The

landscape of parallel computing research: A view from berkeley. Technical Report

UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec

2006.

[2] S. Leeman-Munk, A. Weeden, A. F. Gibbon, B. Johnson-Stalhut, M. Edlefsen,

G. Schuerger, D. Joiner, and C. Peck. SIGCSE Milwaukee, 2010.

12

