
Dynamic Programming with CUDA — Part I

Robert Hochberg

August 21, 2012

Contents

1 Content 2
1.1 Overview . 2
1.2 Dynamic Programming Review . 2
1.3 The Floyd-Warshall Algorithm . 5
1.4 Parallel Considerations . 7

1.4.1 CUDA Kernels . 7
1.4.2 Blocks and Grids . 10
1.4.3 Segment alignment and warps 16

2 Lab Exploration 18
2.1 Installation of CUDA . 18
2.2 First run . 18

2.2.1 File format for describing graphs 19
2.2.2 Compile and run . 20
2.2.3 Running on Lonestar, a queue-based supercomputer running

CUDA . 21
2.3 Scalability of the Code . 21
2.4 Explorations . 23

3 The Code 27
3.1 fw.c . 27
3.2 fwHelpers.cpp . 30
3.3 fwHelpers.h . 32

4 Answers to Spot Checks 33

1

Chapter 1

Content

1.1 Overview

This module provides a quick review of dynamic programming, but the student is
assumed to have seen it before. The parallel programming environment is NVIDIA’s
CUDA environment for graphics cards (GPGPU - general purpose graphics pro-
cessing units). The CUDA environment simultaneously operates with a fast shared
memory and a much slower global memory, and thus has aspects of shared-memory
parallel computing and distributed computing. Specifics for programming in CUDA
are included where appropriate, but the reader is also referred to the NVIDIA CUDA
C Programming Guide [5], and the CUDA API Reference Manual [3].

1.2 Dynamic Programming Review

Dynamic programming describes a broad class of problem-solving algorithms, typ-
ically involving optimization of some sort. What characterizes a problem suitable
for dynamic programming is that solutions to these problem instances can be con-
structed from solutions to smaller problem instances, where these smaller problem
instances are sub-problems of the original problem. A classic example is that of
finding the length of a shortest path in a directed graph that has no cycles, so let us
begin with Figure 1.1.

Suppose we want to find the length of the shortest path from A to B on this graph,

2

Figure 1.1: An acyclic directed graph with weights on its edges

where the path must respect the directions of the arrows, the numbers represent the
length of each of the connecting segments, and the length of a path is the sum of
the lengths of its segments. (We assume in this module that all weights on edges
are non-negative integers.) In the dynamic programming style of thinking we ask
ourselves, What smaller problems could we solve, so that their solutions would give
us the answer to the original, larger problem? In this case, suppose I told you that the
lengths of the shortest paths from vertex A to vertices W, X, Y and Z respectively
were 76, 63, 52 and 85. (W, X, Y and Z are called predecessors to vertex B. In
general, the predecessors of a vertex v are those vertices having an arc from them
directly into v.) You could then find the length of the shortest path from A to B.
The thinking goes as follows: In order to get to vertex B, your second-to-last step
has to be one of the vertices W, X, Y or Z. If W is the second-to-last vertex, then
the shortest the path could be is 76 (the shortest distance to W from A) plus 29, the
length of the edge from W to B, for a total of 105. If the second-to-last vertex is X,
then this value is 63 + 46 = 109. The values for all four possibilities are shown in
the table below.

Second-to-last vertex Distance from A Distance to B Total
W 76 29 105
X 63 46 109
Y 52 50 102
Z 85 28 113

Of these four possibilities, the shortest total distance is achieved by passing through

3

vertex Y on our way to B, and this shortest length is 102. Reasoning in this way, we
can discover the length of the shortest path from A to B, that is, we can solve the
original problem, if we know the solutions to the smaller problems.

Of course, this is helpful only if we have solutions to those smaller problems, that
is, if we know the distances to W, X, Y and Z. We find those solutions in the same
way. For example, to find the length of the shortest path to W, we would want to
find the lengths of the shortest paths to J and X. The table below summarizes the
smaller problems that must be solved to find the shortest paths to each of W, X, Y
and Z.

To vertex Smaller problems that need to be solved
W J, X
X G, D, Y
Y D, E, H
Z Y, K

And here we come to one of the main techniques of dynamic programming: The
table seems to indicate that we would need to solve 10 smaller problems in order
to find all the distances to W, X, Y and Z. But this table has repeated entries.
In fact, we need to solve only six smaller problems. The presence of overlapping
sub-problems is another characteristic of problems amenable to solution by dynamic
programming.

A complete dynamic programming solution to this shortest path problem could be
completed in two ways:

1. Recursively. We could write a function shortestPath(vertex v) as a re-
cursive function that calls shortestPath(vertex w) for each predecessor w
of v, add the lengths of the last steps and select the minimum sum, as we did
above. Each time we compute a shortest path to some vertex v, we store the
length of that path in a lookup table so that we never have to compute that
value again. (Thus a function call shortestPath(v) actually first looks up v
in its table, and if that value has already been computed, simply returns it.
This process, called memoization, is one of the main ingredients of dynamic
programming.)

2. Iteratively. We build the table in such an order that whenever we wish
to compute the shortest path to some vertex, we have already computed the
distances to its predecessors. In our example, we might process the vertices in
this order: A, C, F, E, D, . . ., avoiding the need to make recursive calls.

4

Spot Check 1 Finish the ordering of the vertices A, C, F, E, D, . . . given above,
so that for every vertex in the list, each of its predecessors appear earlier in the list.
Answers are at the back of the module.

1.3 The Floyd-Warshall Algorithm

In this module we will focus on the the Floyd-Warshall algorithm, also called the all
pairs shortest path algorithm. In its most basic form, it provides an O(n3) algorithm
(that is, an algorithm whose running time is roughly proportional to the cube of the
number of vertices in the graph) which is very easy to program, because it is so easy
to understand.

The Floyd-Warshall algorithm is a very widely-used graph algorithm with appli-
cations in scheduling, bioinformatics, routing, and many other areas. Any time a
problem can be expressed in terms of distances in graphs, the Floyd-Warshall algo-
rithm may provide the quickest way to get an answer. Many academic papers have
been written about this algorithm, and recently a few that involve CUDA [[6, 1]].
Here we will give an introduction to the algorithm and a basic implementation that
works well for graphs on up to 20,000 vertices or so, on the newer NVIDIA GPU
cards. Our code for this section is written for graphs with integer weights. In this
module, we assume all weights are non-negative integers.

Figure 1.2 shows a directed graph with six vertices. To the right is the starting
matrix for the Floyd-Warshall algorithm. Its rows and columns are indexed by the
vertices of the graph, and the (v, w) entry of the matrix gives ∞ if there is no arc
from v to w, or the weight on the arc if there is one. For convenience, let us assume
the vertices are ordered, so that we may speak of “the first vertex” or “the first
three vertices.” We may interpret this matrix as giving the distances from v to w
for all pairs (v, w) of vertices of the graph, under the assumption that we may use
no other vertices along the path. Thus, while there is a path from F to C of length
5, via the intermediate vertex D, there is no path from F to C that does not use
an intermediate vertex, so we call the distance “infinite” to say ”you can’t get there
from here.” We denote this matrix M0.

The algorithm now proceeds as follows. On step 1, we ask whether any of these
distances can be improved if we allow the first vertex, and only the first vertex
(vertex A in our example) as an intermediate vertex along paths. For example, the
distance from E to B in M0 is infinite, but if we allow A as an intermediate vertex, the

5

M0 A B C D E F

A 0 4 ∞ 5 5 ∞
B ∞ 0 7 3 ∞ ∞
C ∞ ∞ 0 ∞ ∞ 4
D 7 ∞ 3 0 4 3
E 2 ∞ ∞ 6 0 ∞
F ∞ ∞ ∞ 2 1 0

Figure 1.2: A directed graph and its initial distance matrix

distance drops to 6. Let us denote the distance from v to w in matrix M0 by d0(v, w).
Then using A as an intermediate vertex gives an improvement in the distance from
v to w if and only if d0(v, A) + d0(A,w) < d0(v, w). If we check this inequality for
every pair of vertices, then we can build a new matrix M1 containing the length of
the shortest path from v to w, possibly using A as an intermediate vertex. If we call
this distance d1(v, w), then we have

d1(v, w) = min[d0(v, w), d0(v, A) + d0(A,w)]. (1.1)

Spot Check 2 The matrix M1 is
partially computed and shown to
the right. Finish constructing this
matrix. Note that the finished
matrix will have only two entries
that differ from the original ma-
trix M0.

M0 A B C D E F

A 0 4 ∞ 5 5 ∞
B ∞ 0 7 3 ∞ ∞
C 0
D 7 3 0 4 3
E 2 0
F 2 1 0

In general, for 0 ≤ i ≤ n, where n is the number of vertices in the graph, let Mi be
the matrix containing the shortest distances di(v, w) between pairs of vertices where
we allow only the first i vertices to be used as intermediate vertices. (These are the
“sub-problems” that we talked about in section 1.2.) Then we may form the matrix
Mi from the matrix Mi−1, for i ≥ 1, by observing that

di(v, w) = min[di−1(v, w), di−1(v, Ai) + di−1(Ai, w)]. (1.2)

where Ai is the ith vertex. The algorithm assumes that all entries of matrix Mk are
computed before we begin computing Mk+1. We won’t prove the correctness of the
Floyd-Warshall algorithm. Proofs can be found in standard books on algorithms,
such as [2].

6

1.4 Parallel Considerations

We will use CUDA, NVIDIA’s Compute Unified Device Architecture computing model,
for the examples in this module. CUDA and the nvcc compiler enable the user to
write programs in C that will run on an ordinary host computer (Windows, Linux,
etc...) with the additional capability of running SIMT code on an attached CUDA-
enabled GPU device. (In CUDA parlance, the terms “host” and “device” refer to
the ordinary computer and graphic card respectively. The term SIMT means single
instruction, multiple thread and refers to a model wherein many threads running in
parallel all execute the same instruction at the same time, but on data specific to
that thread.) We refer the reader to the NVIDIA CUDA C Programming Guide for
a detailed overview of the CUDA programming model and hardware. (Version 4.0,
dated 5/6/11, is packaged with this module.) Here, we will introduce specifics about
programming with CUDA as we need them, rather than all at once up front. For
readers who like to see it all up front, please see the Programming Guide, sections
2.1 to 3.2.

A direct parallelization of the Floyd-Warshall algorithm could go as follows: Let us
have a processor for each node of the matrix. On the kth step of the algorithm
processor (i, j) computes dk(i, j) from the matrix Mk−1 using equation (1.2). This
parallel implementation would complete in n steps, giving an algorithm with O(n2)
processors and running time O(n).

For the graph in Figure 1.2 this might work as follows: Initialize matrix M0, create
36 threads (one per entry in the matrix), and on step k, for 1 ≤ k ≤ 6, each thread
uses equation (1.2) to find its value in matrix Mk. Note that we must synchronize
these threads, for it would do no good for the thread computing entry (0, 2) to do
all of its updates before the threads for entries (0, 1) and (1, 2) have begun theirs.
In our code we will perform this synchronization by launching each iteration in a
seperate kernel.

1.4.1 CUDA Kernels

A kernel is a unit of work to be performed on a CUDA-enabled video card. A C
program running on a host computer sets up this kernel, puts any necessary data
onto the video card, and then tells the card to launch the kernel. When it terminates,
the user may read from the video card to extract the results of the run. These three
lines of code are typical of this process:

7

cudaMemcpy(devArray, graph, 36*sizeof(int), cudaMemcpyHostToDevice);

fwStepK <<< 1, 36 >>> (0, devArray, 6, 6);

cudaMemcpy(graph, devArray, 36*sizeof(int), cudaMemcpyDeviceToHost);

The first line copies M0 onto the device and the third line reads M1 off of the
device. The second line is the kernel invocation. CUDA uses the special syntax
function_name <<< blocksPerGrid, threadsPerBlock >>> (arguments) which
is recognized by the nvcc compiler. (Blocks are discussed in the next section.) This
function is compiled for the graphics device, with the appropriate hooks added to
the compiled host code. The full implementation of the Floyd-Warshall algorithm
would look like this:

cudaMemcpy(devArray, graph, 36*sizeof(int), cudaMemcpyHostToDevice);

for(int k = 0; k < 6; k++)

fwStepK <<< 1, 36 >>> (k, devArray, 6, 6);

cudaMemcpy(graph, devArray, 36*sizeof(int), cudaMemcpyDeviceToHost);

Notice that we did 6 invocations of the CUDA kernel before reading the result.
In general, writing between the host and device should be minimized, since it is a
relatively slow process when compared to computing on the device. But invoking a
kernel multiple times on a device is fast, as long as the data is already there, as it is
in our case.

Spot Check 3 There are four entries in M5 which are still ∞, for the graph in
Figure 1.2. These correspond to entries for which there is still no path even if you
are allowed to use A, B, C, D and E as intermediate vertices. Determine these
entries.
You will have the chance to check your answers below in Spot Check 4 by compiling
and running the code included with the module.

Let us take a look at the code for the kernel:

8

__global__ void fwStepK(int k, int devArray[], int Na, int N)

int col = blockIdx.x * blockDim.x + threadIdx.x;

if(col >= N)

return;

int arrayIndex = Na * blockIdx.y + col;

__shared__ int trkc; /* this row, kth column */

// Improve by using the intermediate k, if we can

if(threadIdx.x == 0)

trkc = devArray[Na * blockIdx.y + k];

__syncthreads();

if(trkc == INT_MAX)

return;

int tckr = devArray[k*Na + col]; /* this column, kth row */

if(tckr == INT_MAX)

return;

int betterMaybe = trkc + tckr;

if(betterMaybe < devArray[arrayIndex])

devArray[arrayIndex] = betterMaybe;

Except for a few lines, this is perfectly ordinary C code, and should be easily under-
stood by any C programmer. We’ll take the new-looking lines one at a time.

• __global__ void fwStepK(int k, int devArray[], int Na, int N)

The keyword __global__ tells the nvcc compiler that this function should be
compiled for and run on the CUDA device.

• int col = blockIdx.x * blockDim.x + threadIdx.x;

When the kernel launches, the threads are grouped into blocks, and the blocks
form a grid. Each thread gets the same code, so in order for a thread to identify
itself, built-in variables, which have unique values for each thread, are read so
that the thread can learn where it is and exactly what it should do. Blocks
and grids are discussed below.

• __shared__ int trkc;

The __shared__ keyword tells the compiler that this variable should be stored

9

in the fast shared memory, and so will be shared by every thread in the block.
Without this keyword, each thread would get its own copy of this variable,
stored in a register or in the thread’s local memory.

• __syncthreads()

Threads within the same block can be synchronized, meaning that all threads
in that block are required to reach the __syncthreads() statement before
any threads are allowed to pass it. A kernel may have any number of these
statements. Each will be an independent synchronization point for the threads.

There are probably a few other things that look odd, such as why we use a one-
dimensional array to store our matrix when a two-dimensional array might be better,
and why we have the variable Na when N is the number of vertices. These have to
do with “blocks” of threads and the memory hierarchy, which will be explained in
the next section.

1.4.2 Blocks and Grids

Let us examine the <<<1, 36>>> notation in the previous example. The “1” tells
the device to launch one block of threads, and the “36” tells the device that each
block should have 36 threads. Thus we launch 36 threads altogether, one for each
matrix entry. Threads running on a device are grouped into blocks. Threads in
the same block can share the very fast shared memory with each other. Figure 1.3
(taken from Section 2.3 of the NVIDIA CUDA C Programming Guide) shows the
memory hierarchy involved with CUDA kernels. Threads in different blocks may
communicate via global memory which, while still on the device, is much slower
than shared memory. There is therefore some advantage to launching threads within
the same block. CUDA limits block size to 512 or 1024 threads (depending on the
device). Additionally, block size is limited by the amount of shared memory available
on the device, and the amount needed by each thread.

When the CUDA scheduler sees an available multiprocessor, it looks for a block of
threads that needs to run, and puts the entire block onto that multiprocessor. Blocks
are automatically grouped into warps of size 32, so that a block of size 512 will consist
of 16 warps. If a multiprocessor has 8 cores, then the warp is divided into quarter-
warps of 8 threads each, and these are run on the cores. If the multiprocessor
has 32 cores, then the whole warp can be processed together. When one warp
finishes, the next warp in the block may start. If the threads of one warp get
blocked, for example, because of a memory read, then the scheduler simply looks for

10

Figure 1.3: The CUDA Memory Hierarchy. Taken from the CUDA C Programming
Guide

another warp that is ready to run and schedules it. For the full (more interesting)
picture of block/warp/thread scheduling, see Chapter 4 of the CUDA C Programming
Guide.

The user has no control over the order in which blocks are scheduled onto proces-
sors, and therefore the blocks must be able to run in any order, independent of one
another. This unique requirement means that the code will scale naturally when run
on a device with more multiprocessors. For example, this document is being written
on a MacBook Pro running CUDA on its built-in NVIDIA GT 330M graphics card.
This card has 6 multiprocessors, each with 8 cores, giving 48 cores altogether. A
machine with NVIDIA’s GTX470 graphics card has access to 14 multiprocessors,
each with 32 cores, for 448 cores total. Code written for this MacBook will run as

11

written on the GTX470, but will benefit from the greater number of cores. Since
the blocks are independent, they can be distributed over the greater number of mul-
tiprocessors without any worry about race conditions or synchronization problems.
(See Appendix F of the CUDA C Programming Guide for more.)

Given this requirement, how can we make sure that every thread has finished com-
puting its entry in Mk before any begins to compute its entry in Mk+1? Our imple-
mentation of Floyd-Warshall uses separate kernels, as shown in the previous code
snippet. We can achieve synchronization by forcing each kernel to run to comple-
tion before the next kernel is launched by means of the cudaThreadSynchronize()

function.

cudaMemcpy(devArray, graph, 36*sizeof(int), cudaMemcpyHostToDevice);

for(int k = 0; k < 6; k++) {
fwStepK <<< 1, 36 >>> (k, devArray, 6, 6);

cudaThreadSynchronize();

}
cudaMemcpy(graph, devArray, 36*sizeof(int), cudaMemcpyDeviceToHost);

Without this statement, it is possible that blocks from one kernel may still be running
when blocks from the next kernel are put on another multiprocessor. (Only devices
of compute capability 2.1 or higher have the capability of running multiple kernels
simultaneously. See section 3.2.5 of the CUDA C Programming Guide, as well as
Appendix F.)

We are now ready to examine the built-in variables (Section B.4 in the CUDA C
Programming Guide.)

As shown in Figure 1.4, the threads in a CUDA kernel are grouped into blocks, and
these blocks are grouped into a grid. In the Figure, the blocks and grid are both
two-dimensional, but these can be one-, two- or three-dimensional depending on the
programmer’s need. Our kernel given above uses a two-dimensional layout of the
blocks and grid, since that most naturally conforms to the shape of the matrices we
are using.

When a thread is created several built-in variables are defined. When a thread reads
these variables, the results locate the thread within its block and the grid. Some of
these use the uint3 data type, which is a 3-dimensional vector of unsigned ints, or
the dim3 type which is based on uint3. If variable D is of type uint3 or dim3, then
its components can read as D.x, D.y and D.z.

12

Figure 1.4: Grids and Blocks of Threads. Taken from the CUDA C Programming
Guide

• gridDim. This is of type dim3, and gives the dimensions of the grid. In our
kernel, this was equal to (1, 1, 1).

• blockIdx. This is of type uint3 and gives the coordinates of the thread’s block
containing the thread, within the grid. For all of the threads in our six-vertex
graph example, this would equal (1, 1, 1).

• blockDim. This is of type dim3, and gives the dimensions of the blocks. In our
example, this is equal to (36, 1, 1) for every thread.

• threadIdx. This is of type uint3 and gives the coordinates of the thread
within its block. In our example, this is (i, 1, 1) for the i’th thread in the
block, 0 ≤ i < 36.

An example helps us understand how to use these variables. Suppose we are pro-
cessing a matrix of size 500 × 800, with one thread per matrix element, and blocks
of dimensions 32 × 32. We would launch our kernel with a grid having dimension

13

500/32 × 800/32, with each dimension rounded up to the nearest integer so that
the entire matrix is covered, giving a 16 × 25 grid. When the kernel is launched,
16 × 25 = 400 blocks will be created, each with 32 × 32 = 1024 threads. Then for
each thread,

col = blockIdx.x * blockDim.x + threadIdx.x

row = blockIdx.y * blockDim.y + threadIdx.y

as suggested by Figure 1.4. In fw.c we chose blocks of dimension 1× 256. (See the
definition int threadsPerBlock = 256; in the main method. To best understand
why we chose blocks of dimensions 1 × 256 in our kernel, let us assume that we
have a graph with 1,000 vertices instead of just six. In this case we would have a
million threads logically arranged in a 1, 000× 1, 000 matrix. On devices of compute
capability 1.x (which includes this MacBook Pro’s card — see Appendices A and F of
the CUDA C Programming Guide for a discussion on compute capabilities. Roughly
it describes how much computing power the device has in terms of API calls and
hardware.) a block may contain at most 512 threads. In our case, however, it is our
use of shared memory that limits block size. We will therefore have to partition the
threads into blocks, all of of which must be the same size. There are many ways that
this may be done. For example, we may have

• A 100× 100 grid of blocks, each of size 10× 10 (blocks are square submatrices)

• A 2× 1000 grid of blocks, each of size 500× 1 (blocks are portions of columns)

• Or even a grid of 64 × 64 blocks, each of size 16 × 16. (blocks are squares
submatrices, with some “hanging over” the right and bottom edges of the
matrix

This last may seem odd, but sometimes it makes sense to use sizes that are powers
of 2, in order to facilitate coalescing of accesses to global memory. (See section F.3.2
of the CUDA C Programming Guide for more on coalescing.)

In our code we use blocks that comprise portions of rows of the matrix, for the
following reason. We store our matrix as a one-dimensional array in row-major
order; that is, the first row comprises the first entries in the array, then the second
row, then the third, and so on. Thus the rows are stored contiguously in memory,
while the columns get chopped up and scattered. The left side of Figure 1.5 shows
the situation where a block of threads comprises a portion of a row of the matrix.
When computing dk(i, j) from Mk−1, which is stored in global memory, thread (i, j)
needs access to the (i, k) entry of Mk−1, and the (k, j) entry of that same matrix.

14

Figure 1.5: Left: Blocks are rows of the matrix. Right: Blocks are columns.

The threads in the block will all share the (i, k) entry. This entry (the little square
on the left side of the figure) is read by the first thread in the block, that is, the
thread having threadIdx.x == 0 and stored in the shared variable trkc. After that
one read from (slow) global memory, all threads in the block will have access to it
via the (fast) shared memory.

When the threads in this block ask for the matrix entry (k, j), all those threads have
different values of j, so they are all asking for different entries in global memory.
These entries are depicted by the gray rectangle at the top of the matrix. Notice
that they comprise a contiguous portion of a row, and thus a contiguous portion of
the array in global memory. When the addresses that the threads are asking for are
contiguous in global memory, the hardware can coalesce these requests into a single
memory transfer. As NVIDIA says,

“Perhaps the single most important performance consideration in programming
for the CUDA architecture is coalescing global memory accesses.”

—Section 3.2.1 of the CUDA C Best Practices Guide [4]

Contrast this with the case of having our blocks be portions of the columns of the
matrix, as shown on the right of Figure 1.5. There we could share the single entry at
the top of the matrix, but we’d need to load all of the entries in the vertical block on
the left side of that matrix. These would not be stored contiguously, and so would
require more accesses to the (slow) global memory.

15

1.4.3 Segment alignment and warps

Now we are in a position to explain why we introduce the variable Na in the code.
GPUs of all compute capabilities logically break a block of threads into warps of 32
consecutive threads. So if a block has 128 threads, then threads 0 . . . 31 will comprise
the first warp, threads 32 . . . 63 will comprise the second warp, threads 64 . . . 95 will
comprise the third warp, and threads 96 . . . 127 will comprise the last warp. When
processing a block, the warp scheduler looks for a warp that has threads that are
ready to run (that is, not waiting for I/O of some sort) and will put them on the
multiprocessor. These will then run together, even if threads from a different warp
in the same block are far ahead or behind.

When programming in CUDA it is important for several reasons to be aware of
warps. For example, on devices of compute capability 1.2 or greater, you can do an
AND operation across all threads in a warp in a single instruction. (See section B.12
of the CUDA C Programming Guide.) What matters for us here is that it is at the
level of the warp where global memory accesses are coalesced. When the 32 threads
of a warp each ask for an int from global memory, and those 32 ints are stored
consecutively, then these may be coalesced into a single 128-byte access. But only if
that block of 128 bytes begins on a memory address which is a multiple of 128. This
is the notion of alignment.

Here is the code / pseudocode for the portion of fwHelpers.cpp that builds the
initial matrix M0:

int alignment = 32;

Na = alignment * ((N + alignment - 1) / alignment);

int* a = (int*) malloc(N * Na * sizeof(int));

for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

if(there’s an edge from vertex i to vertex j)

a[i * Na + j] = the edge’s weight

else

a[i * Na + j] = INT_MAX;

return a;

The variable N represents the number of vertices in the graph. Na rounds this number
up to a multiple of alignment, which is set to 32 in our code snippet. As a result, the

16

malloc statement reserves enough memory to hold a matrix of height N and width
Na. This over-allocation wastes some memory, but now every row of the matrix will
begin on a memory address which is a multiple of 32 * sizeof(int), that is, 128
for 32-bit machines or 256 for 64-bit machines. This is relevant because coalesced
accesses can take place only when the blocks of memory being accessed are properly
aligned, meaning that they begin at a memory location that is a multiple of 64, 128,
256, etc... as appropriate. (Again, see section F.3.2 of the CUDA C Programming
Guide for more on coalescing.)

The various versions of cudaMalloc are guaranteed to return pointers aligned to 256
bytes. (See Section 3.2.1.2 of the CUDA C Best Practices Guide.) Our matrices will
therefore begin at a memory address which is a multiple of 256, and all subsequent
rows will begin on multiples of 128 and/or 256. And if our block sizes are multiples of
32, then all rows requested by our blocks will begin at addresses which are multiples
of 128 (32 ints = 128 or 256 bytes). All of this to encourage coalescing!

17

Chapter 2

Lab Exploration

2.1 Installation of CUDA

This has probably been done for you by your instructor, who can give you the details
of the installation. If not, see Appendix A of the NVIDIA CUDA C Programming
Guide to find out what graphics cards support CUDA, and then use the appropriate
NVIDIA CUDA C Getting Started Guide (for Windows, Linux or Mac) to install
the developers kit and drivers.

You probably have a successful install when you can run nvcc --version and receive
a message from the compiler, and deviceQuery to find out the details of your CUDA-
enabled card.

2.2 First run

Find the directory containing the files fw.c, fwHelpers.h, fwHelpers.cpp and
Makefile. These are available in zipped format from this module’s website. Type
make fw to build the executable fw. This is the implementation of the Floyd-
Warshall algorithm discussed above. The “fwHelpers” files include code for reading
a graph from a file, and writing out the adjacency matrix of the graph before, during
and/or after the algorithm’s run.

18

A B 4

A D 5

A E 5

B C 7

B D 3

C F 4

D A 7

D C 3

D E 4

D F 3

E A 2

E D 6

F D 2

F E 1

--END--

Figure 2.1: A directed graph and its description in a text file

IMPORTANT NOTE: Many text editors facilitate writing C code by automati-
cally indenting code and highlighting the code by context, and does so by recognizing
the “.c” extension of the file. Most of these editors do not recognize the “.cu” exten-
sion. I’ve therefore been writing the code as “.c” files, and then having the Makefile
copy them to “.cu” files before compilation. This is because the nvcc compiler re-
quires the “.cu” extension. There are other ways to deal with this discrepancy...
Pick your own. But be aware that this is the workflow that the included Makefile

expects.

2.2.1 File format for describing graphs

You’ll notice that the code in fwHelpers.cpp for reading a graph from a file is rather
longer than you might expect. This is to make it easy for the programmer to describe
graphs in the file. Vertices are named by arbitrary ASCII strings of non-whitespace
characters, and an edge from V to W of length l is described in the file by placing
V W l on a single line. The last line of graph file must be “--END--”. The program
reads the number of edges and vertices, so there is no need to specify these in the
input file. The input file for the graph of Figure 1.2 is shown in Figure 2.1, and is
included with this module as graph1.txt. The file graph2.txt is the input for the
graph shown in Figure 1.1.

19

Figure 2.2: A directed 10-cycle (left) and an undirected 10-cycle (right)

Also included with this module is a simple C program for generating directed and
undirected cycles. Type make cycleProgs to get two executables, makeDirCycle
and makeUndirCycle. Then type, for example, makeDirCycle 10 to generate a
directed 10-cycle, and makeUndirCycle 10 to generate an undirected 10-cycle, as
shown in Figure 2.2. An undirected cycle on n vertices is a good test case for the
Floyd-Warshall algorithm, since it takes a full n iterations of the algorithm to find
all shortest paths.

2.2.2 Compile and run

Compile the program by typing make fw at a command line. This generates an
executable called fw. To run the program, type fw graphFileName. For example,
to run the algorithm on the graph in Figure 1.1 you would type fw graph2.txt. By
default, the program prints out the distance matrix for up to the first ten vertices
of the graph, after the algorithm terminates. You can insert extra printArray()

commands before or in the loop in main() to see the matrices M0,M1, See the
two commented-out lines in the loop in fw.c.

You’ll notice that in the code we make use of the variable err which is of type
cudaError_t. This is very helpful for debugging, since most CUDA commands
involving memory allocation and copy return an error value which can be tested, and
even printed using the function cudaGetErrorString(), as shown in the code.

Spot Check 4 This is a continuation of Spot Check 3. Uncomment out the three
lines in the for loop in main() that print the partial tables and type make fw to
compile the program. Run it with the input graph graph1.txt by typing ./fw

graph1.txt at the commandline, and check your answers from Spot Check 3.

20

2.2.3 Running on Lonestar, a queue-based supercomputer
running CUDA

If you can get an acount on Lonestar, a scientific computing cluster of the Texas
Advanced Computing Center, then here are the steps for running the code in this
module.

1. Compile fw as discussed above.

2. Create a file called sgeFile.txt, with the following contents (except with your
own email address!):

#!/bin/bash

#$ -V #Inherit the submission environment

#$ -cwd # Start job in submission directory

#$ -N fwRun # job name

#$ -j y # Combine stderr and stdout

#$ -o $JOB_NAME.o$JOB_ID # Name of the output file

#$ -q gpu # Queue name gpu

#$ -pe 1way 12 # 1 node having 12 cores

#$ -l h_rt=00:30:00 # Run time (hh:mm:ss) 30 mins

#$ -M robh@shodor.org # email notification - use yours!

#$ -m be # Email at Begin and End of job

set -x # Echo commands, use set echo with csh

ibrun fw graph.txt # Run the program

Then type qsub sgeFile.txt to add your request to the queue. You will
receive an email when the job is started, and another when the job ends.
The system will also create an output file called fwRun.o314432, where the
“314432” is replaced by the system-assigned job id.

2.3 Scalability of the Code

We tested our CUDA-enabled code on machines with four different compute capa-
bilities. (See appendix F of the CUDA C Programming guide for a discussion of
compute capabilities.) For our tests, we created undirected cycles of sizes 10, 20, 30,
. . ., 1800, and ran our algorithm on each of them ten times and took the average.

21

We wished to evaluate the speed of the CUDA cards themselves, and correct for the
overhead of copying to and from the card in our tests. This can be important. For
example, my MacBook Pro will run faster on graphs up to about 500 vertices than
Lonestar at the Texas Advanced Computing Center, which runs a much more power-
ful graphics processor. The reason is that the graphics cards at Lonestar reside in an
expansion box off the motherboard, making memory transfers to and from the card
a bit slower. So even though Lonestar’s card is about six times faster than that on
my Mac, jobs with a high memory transfer to compute ratio may take longer.

To correct for memory transfers to and from the card, we compiled a second version
of fw that copied the matrix to the card, did not invoke the kernel, and then copied
the memory back off the card. We alternated runs with no kernel with runs having
the kernel, completing ten runs of each. We took the difference of the averages, and
these differences are shown in Figure 2.3.

Figure 2.3: Kernel run times for fw on graphs having between 10 and 1800 vertices,
on machines with four different compute capabilities.

22

Figure 2.4: Left: Run time vs. # cores on a 1980 vertex cycle. Right: Plots of ratios
have similar shapes.

The table below gives some details about these four video cards:

Card Comp. Cap. # Multiprocs. # Cores/MP Total # cores
GeForce GT 9600M 1.1 4 8 32
GeForce GT 330M 1.2 6 8 48

Tesla C1060 1.3 30 8 240
Tesla M2070 2.0 14 32 448

In an ideal situation, the run time of a problem would be inversely proportional to
the number of cores available to it. The CUDA architecture comes close to providing
that for us, at least for the four machines we’ve tested our algorithm on. Figure 2.4
shows on the left a plot of run time vs. number of cores, and on the right a plot
showing that the fractions

Run time on machine k

Run time on Longhorn
and

processors on Longhorn

processors on machine k

have roughly the same shape when plotted.

2.4 Explorations

1. Theory: The blocks of threads in the kernel are required to be independent.
That is, the program must produce the correct result regardless of the order in
which the blocks are scheduled. But consider the kth row and column of the

23

matrix. Every entry (i, j) of the matrix is looking at entries (i, k) and (k, j)
when doing its update. But these three entries may be in entirely different
thread blocks, and so the order in which they are processed might make a
difference in the final outcome. Show that it does not.

2. syncthreads(): The kernel function in fw.c contains a single __syncthreads()
call. Experiment to see whether this call is really necessary. Then explain how
the wrong answer could be arrived at without this call.

3. cudaMallocPitch: CUDA provides a more natural mechanism for allocating a
two-dimensional array; the cudaMallocPitch command. (See Section 5.3.2.1.2
of the CUDA C Programming Guide.) Re-write the code using this method
instead of making use of our ALIGNMENT and Na variables. See if there is any
improvement in the running time.

4. Columns Instead of Rows: Re-write the code using blocks of threads that
are columns instead of rows, and compare the running time with the current,
row-based blocks.

5. Is CUDA Worth the Trouble? You can substitute the following lines of
code for main() in fw.c,

int main(int argc, char* argv[])\{

int N = 0;

int Na = 0;

int* graph = readGraph(N, Na, argv[1]);

printf("Read %s with %d vertices, Na = %d\n", argv[1], N, Na);

printArray(N, graph);

for(int k = 0; k < N; k++)

for(int i = 0; i < N; i++)

if(graph[i*N + k] != INT_MAX)

for(int j = 0; j < N; j++)

if(graph[k*N + j] != INT_MAX)

if(graph[i*N + k] + graph[k*N + j] < graph[i*N + j])

graph[i*N + j] = graph[i*N + k] + graph[k*N + j];

printArray(N, graph);

\}

and change the line in fwHelpers.cpp

24

Na = alignment*((N + alignment-1)/alignment);

to

Na = N;

and have a single-processor, non-parallel version of the Floyd-Warshall algo-
rithm. (This is the typical implementation.) Compare these running times
against the CUDA-based solutions. At what point is it worth it to launch a
CUDA kernel to do the work? Is it ever really worth it?

6. Speedup Considerations: Suppose that we have the very latest system with
K CUDA-enabled cards, each with M multi-processors, each of which has C
cores. On this system we run the algorithm described in this module on graphs
with n vertices. As n gets large, what function describes the growth of the
running time T (n) for solving the problem on n vertices? For example, would
you say it grows linearly (T (n) = O(n))? quadratically (T (n) = O(n2))?
exponentially (T (n) = O(2n))?

7. Jumps in the Green Graph: The green plot in Figure 2.3 seems to take
a leap upward with some regularity. Explain why this might be happening.
(Another question might be to ask why we don’t see this happen in the other
three curves. I don’t know the answer to that question.)

8. The Actual Shortest Path: The code currently produces a matrix whose
(i, j)-entry is the length of the shortest path from vertex i to vertex j. Modify
the code so that the program produces another matrix whose (i, j)-entry is the
vertex you should step to from vertex i if you are traveling along a shortest
path from vertex i to vertex j. For example, the (A,G)-entry in the graph of
Figure 1.1 would be “C”. Then show how to use this matrix to build the whole
path from i to j.

25

9. Strong Scaling: The phrase strong scaling is used to describe how well run-
ning time improves when more processors are applied to the solution of some
fixed problem. For example, we may wish to measure how quickly we can solve
the all-pairs shortest path problem on a graph with 1000 vertices on a single-
CPU system, a CUDA-capable system with 48 cores, and a CUDA-capable
system with 448 cores. Can the problem be solved in 1/448 the time with 448
cores as compared to the single-CPU system? If you have different CUDA-
capable systems available with different numbers of cores, compare running
times on some large, fixed-size problem to see how well our implementation of
the Floyd-Warshall algorithm scales.

26

Chapter 3

The Code

3.1 fw.c

#include <stdio.h>

#include "fwHelpers.h"

/***

* Kernel to improve the shortest paths by considering the kth vertex

* as an intermediate.

*

* arg: k = the index of the vertex we are using as intermediate

* arg: devArray = the array containing the matrix

* arg: N = the number of vertices in the graph

* arg: Na = the width of the matrix as stored on the device’s memory.

*

* The graph is stored as an N x Na matrix, with the (i, j) matrix entry

* being stored as devArray[i*Na + j]

*

***/

__global__ void fwStepK(int k, int devArray[], int Na, int N){

int col = blockIdx.x * blockDim.x + threadIdx.x; /* This thread’s matrix column */

if(col >= N)

return;

27

int arrayIndex = Na * blockIdx.y + col;

__shared__ int trkc; /* this row, kth column */

// Improve by using the intermediate k, if we can

if(threadIdx.x == 0)

trkc = devArray[Na * blockIdx.y + k];

__syncthreads();

if(trkc == INT_MAX) /* infinity */

return;

int tckr = devArray[k*Na + col]; /* this column, kth row */

if(tckr == INT_MAX) /* infinity */

return;

int betterMaybe = trkc + tckr;

if(betterMaybe < devArray[arrayIndex])

devArray[arrayIndex] = betterMaybe;

}

/**

* main

*

* We read in the graph from a graph file, in this format:

* First we read in N, the number of vertices

* The vertices are assumed to be numbered 1..N

* Then we read in triples of the form s d w

* where s is the source vertex, d the destination, and w the weight

*

* The "best weight so far" matrix stores rows contiguously, with

* bwsf(i, j) being the best weight FROM i TO j

*

* Thread blocks comprise rows of the matrix, so that we can

* take advantage of global memory access grouping

**/

int main(int argc, char* argv[]){

28

int N = 0; /* Number of vertices */

int Na = 0; /* Width of matrix to encourage coalescing */

int* graph = readGraph(N, Na, argv[1]); /* from fwHelpers.cpp */

printf("Kernel: Just read %s with %d vertices, Na = %d\n", argv[1], N, Na);

// Copy the array to newly-allocated global memory

int* devArray;

cudaError_t err = cudaMalloc(&devArray, Na*N*sizeof(int));

printf("Malloc device rules: %s\n",cudaGetErrorString(err));

err = cudaMemcpy(devArray, graph, Na*N*sizeof(int), cudaMemcpyHostToDevice);

printf("Pre-kernel copy memory onto device: %s\n",cudaGetErrorString(err));

// Set up and run the kernels

int threadsPerBlock = 256;

dim3 blocksPerGrid((Na + threadsPerBlock - 1) / threadsPerBlock, N);

// The kth run through this loop considers whether we might do better using

// the kth vertex as an intermediate

for(int k = 0; k < N; k++){

fwStepK <<< blocksPerGrid, threadsPerBlock >>> (k, devArray, Na, N);

err = cudaThreadSynchronize();

// Uncomment the following line when debugging the kernel

// printf("Kernel: using %d as intermediate: error = %s\n", k, cudaGetErrorString(err));

// Uncomment the following two lines to print intermediate results

// err = cudaMemcpy(graph, devArray, Na*N*sizeof(int), cudaMemcpyDeviceToHost);

// printArray(Na, graph);

}

err = cudaMemcpy(graph, devArray, Na*N*sizeof(int), cudaMemcpyDeviceToHost);

printf("Post-kernel copy memory off of device: %s\n",cudaGetErrorString(err));

printArray(Na, graph);

free(graph);

cudaFree(devArray);

}

29

3.2 fwHelpers.cpp

#include "fwHelpers.h"

map<string, int> nameToNum; /* names of vertices */

map<string, map<string, int> > weightMap; /* weights of edges */

int* readGraph(int& N, int& Na, char* argv){

// Read the graph file from memory

string vname1, vname2;

ifstream graphFile;

string dummyString;

int thisWeight; /* weight of the edge just read from file */

N = 0; /* number of vertices */

graphFile.open(argv);

//Read the graph into some maps

graphFile >> vname1;

while(vname1 != "--END--"){

graphFile >> vname2;

graphFile >> thisWeight;

if(nameToNum.count(vname1) == 0){

nameToNum[vname1] = N;

weightMap[vname1][vname1] = 0;

N++;

}

if(nameToNum.count(vname2) == 0){

nameToNum[vname2] = N;

weightMap[vname2][vname2] = 0;

N++;

}

weightMap[vname1][vname2] = thisWeight;

graphFile >> vname1;

}

graphFile.close(); // Nice and Tidy

// "alignment" is what stored row sizes must be a multiple of

30

int alignment = ALIGNMENT;

Na = alignment*((N + alignment-1)/alignment); /* for the sizes of our arrays */

printf("Alignment = %d\n", alignment);

// Build the array

int* a = (int*) malloc(N*Na*sizeof(int));

for(int ii = 0; ii < N; ii++)

for(int jj = 0; jj < N; jj++)

a[ii * Na + jj] = INT_MAX;

map<string, int>::iterator i;

map<string, int>::iterator j;

for(i = nameToNum.begin(); i != nameToNum.end(); ++i)

for(j = nameToNum.begin(); j != nameToNum.end(); ++j){

if(weightMap[(*i).first].count((*j).first) != 0){

a[Na * (*i).second + (*j).second] = weightMap[(*i).first][(*j).first];

}

}

return a;

}

void printArray(int Na, int* a){

map<string, int>::iterator i, j;

for(i = nameToNum.begin(); i != nameToNum.end(); ++i)

if(i->second < 10)

printf("\t%s", i->first.c_str());

printf("\n");

j = nameToNum.begin();

for(i = nameToNum.begin(); i != nameToNum.end(); ++i){

if(i->second < 10){

printf("%s\t", i->first.c_str());

for(j = nameToNum.begin(); j != nameToNum.end(); ++j){

if(j->second < 10){

int dd = a[i->second * Na + j->second];

if(dd != INT_MAX)

printf("%d\t",dd);

else

printf("--\t");

}

31

}

printf("\n");

}

}

}

3.3 fwHelpers.h

#ifndef FWHELPERS_H

#define FWHELPERS_H

#ifndef ALIGNMENT

#define ALIGNMENT 64

#endif

#include <stdio.h>

#include <string>

#include <map>

#include <iostream>

#include <fstream>

using namespace std;

int* readGraph(int&N, int&Na, char* argv);

void printArray(int Na, int* a);

#endif

32

Chapter 4

Answers to Spot Checks

1. There are many possible answers. Here is just one:
A, C, F, E, D, G, I, H, Y, X, J, W, K, Z, B.

2. The two numbers that changed are the “11” and “6” in the second column.
They were both ∞ in the M0 matrix.

M0 A B C D E F

A 0 4 ∞ 5 5 ∞
B ∞ 0 7 3 ∞ ∞
C ∞ ∞ 0 ∞ ∞ 4
D 7 11 3 0 4 3
E 2 6 ∞ 6 0 ∞
F ∞ ∞ ∞ 2 1 0

33

3. The four entries that are still∞ are those in the ‘C’ row corresponding to paths
from C to vertices A, B, D and E.

4. Here is the output:

Alignment = 64

Kernel: Just read graph1.txt with 6 vertices, Na = 64

Malloc device rules: no error

Pre-kernel copy memory onto device: no error

Kernel: using 0 as intermediate: error = no error

A B C D E F

A 0 4 -- 5 5 --

B -- 0 7 3 -- --

C -- -- 0 -- -- 4

D 7 11 3 0 4 3

E 2 6 -- 6 0 --

F -- -- -- 2 1 0

Kernel: using 1 as intermediate: error = no error

A B C D E F

A 0 4 11 5 5 --

B -- 0 7 3 -- --

C -- -- 0 -- -- 4

D 7 11 3 0 4 3

E 2 6 13 6 0 --

F -- -- -- 2 1 0

Kernel: using 2 as intermediate: error = no error

A B C D E F

A 0 4 11 5 5 15

B -- 0 7 3 -- 11

C -- -- 0 -- -- 4

D 7 11 3 0 4 3

E 2 6 13 6 0 17

F -- -- -- 2 1 0

Kernel: using 3 as intermediate: error = no error

A B C D E F

A 0 4 8 5 5 8

B 10 0 6 3 7 6

C -- -- 0 -- -- 4

D 7 11 3 0 4 3

34

E 2 6 9 6 0 9

F 9 13 5 2 1 0

Kernel: using 4 as intermediate: error = no error

A B C D E F

A 0 4 8 5 5 8

B 9 0 6 3 7 6

C -- -- 0 -- -- 4

D 6 10 3 0 4 3

E 2 6 9 6 0 9

F 3 7 5 2 1 0

Kernel: using 5 as intermediate: error = no error

A B C D E F

A 0 4 8 5 5 8

B 9 0 6 3 7 6

C 7 11 0 6 5 4

D 6 10 3 0 4 3

E 2 6 9 6 0 9

F 3 7 5 2 1 0

Post-kernel copy memory off of device: no error

A B C D E F

A 0 4 8 5 5 8

B 9 0 6 3 7 6

C 7 11 0 6 5 4

D 6 10 3 0 4 3

E 2 6 9 6 0 9

F 3 7 5 2 1 0

35

Bibliography

[1] Aydin Buluç, John R. Gilbert, and Ceren Budak. Solving path problems on the
gpu. Parallel Comput., 36:241–253, June 2010.

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[3] The NVIDIA Corporation. The CUDA API Reference Manual, v4.0. NVIDIA
Corporation, 2011.

[4] The NVIDIA Corporation. The CUDA C Best Practices Guide v4.0. NVIDIA
Corporation, 2011.

[5] The NVIDIA Corporation. The CUDA C Programming Guide v4.0. NVIDIA
Corporation, 2011.

[6] Gary J. Katz and Joseph T. Kider, Jr. All-pairs shortest-paths for large graphs on
the gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, GH ’08, pages 47–55, Aire-la-Ville, Switzerland,
Switzerland, 2008. Eurographics Association.

36

	Content
	Overview
	Dynamic Programming Review
	The Floyd-Warshall Algorithm
	Parallel Considerations
	CUDA Kernels
	Blocks and Grids
	Segment alignment and warps

	Lab Exploration
	Installation of CUDA
	First run
	File format for describing graphs
	Compile and run
	Running on Lonestar, a queue-based supercomputer running CUDA

	Scalability of the Code
	Explorations

	The Code
	fw.c
	fwHelpers.cpp
	fwHelpers.h

	Answers to Spot Checks

