

DG-05603-001_v4.0 | May 2011

Design Guide

CUDA C BEST PRACTICES GUIDE

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | ii

DOCUMENT CHANGE HISTORY

DG-05603-001_v4.0

Version Date Authors Description of Change

3.0 February 4, 2010 CW See Section C.1

3.1 May 19, 2010 CW See Section C.2

3.2 August 20, 2010 CW See Section C.3

4.0 May 9, 2011 CW,NJ,VS See Section C.4

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | iii

TABLE OF CONTENTS

Preface ... 1

What is This Document? ... 1

Who Should Read This Guide? .. 1

Recommendations and Best Practices ... 2

Contents .. 2

Chapter 1. Parallel Computing with CUDA ... 4

1.1 Heterogeneous Computing with CUDA ... 4

1.1.1 Differences Between Host and Device ... 4

1.1.2 What Runs on a CUDA-Enabled Device? ... 5

1.1.3 Maximum Performance Benefit .. 7

1.2 Understanding the Programming Environment ... 7

1.2.1 CUDA Compute Capability .. 8

1.2.2 Additional Hardware Data .. 8

1.2.3 CUDA Runtime and CUDA Driver API Version... 9

1.2.4 Which Version to Target .. 9

1.3 CUDA APIs ... 10

1.3.1 CUDA Runtime API ... 11

1.3.2 CUDA Driver API .. 11

1.3.3 When to Use Which API ... 11

1.3.4 Comparing Code for Different APIs .. 12

Chapter 2. Performance Metrics .. 15

2.1 Timing .. 15

2.1.1 Using CPU Timers .. 15

2.1.2 Using CUDA GPU Timers .. 16

2.2 Bandwidth .. 17

2.2.1 Theoretical Bandwidth Calculation ... 17

2.2.2 Effective Bandwidth Calculation .. 18

2.2.3 Throughput Reported by cudaprof .. 18

Chapter 3. Memory Optimizations .. 19

3.1 Data Transfer Between Host and Device ... 19

3.1.1 Pinned Memory ... 20

3.1.2 Asynchronous Transfers and Overlapping Transfers with Computation 20

3.1.3 Zero Copy .. 23

3.2 Device Memory Spaces .. 24

3.2.1 Coalesced Access to Global Memory .. 25

3.2.2 Shared Memory ... 31

3.2.3 Local Memory ... 38

3.2.4 Texture Memory .. 39

3.2.5 Constant Memory ... 42

3.2.6 Registers ... 42

3.3 Allocation ... 43

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | iv

Chapter 4. Execution Configuration Optimizations ... 44

4.1 Occupancy ... 44

4.2 Calculating Occupancy ... 45

4.3 Hiding Register Dependencies .. 46

4.4 Thread and Block Heuristics .. 47

4.5 Effects of Shared Memory ... 48

Chapter 5. Instruction Optimizations ... 50

5.1 Arithmetic Instructions ... 50

5.1.1 Division and Modulo Operations ... 50

5.1.2 Reciprocal Square Root .. 51

5.1.3 Other Arithmetic Instructions ... 51

5.1.4 Math Libraries ... 51

5.2 Memory Instructions ... 54

Chapter 6. Control Flow ... 55

6.1 Branching and Divergence .. 55

6.2 Branch Predication .. 56

6.3 Loop counters signed vs. unsigned .. 56

Chapter 7. Getting the Right Answer .. 58

7.1 Debugging ... 58

7.2 Numerical Accuracy and Precision ... 58

7.2.1 Single vs. Double Precision ... 59

7.2.2 Floating-Point Math Is Not Associative .. 59

7.2.3 Promotions to Doubles and Truncations to Floats 59

7.2.4 IEEE 754 Compliance .. 60

7.2.5 x86 80-bit Computations .. 60

Chapter 8. Multi-GPU Programming ... 61

8.1 Introduction to Multi-GPU ... 61

8.2 Multi-GPU Programming ... 61

8.3 Selecting a GPU ... 62

8.4 Inter-GPU communication ... 63

8.5 Compiling Multi-GPU Applications .. 63

8.6 Infiniband .. 64

Appendix A. Recommendations and Best Practices .. 65

A.1 Overall Performance Optimization Strategies .. 65

A.2 High-Priority Recommendations .. 66

A.3 Medium-Priority Recommendations .. 66

A.4 Low-Priority Recommendations .. 67

Appendix B. NVCC Compiler Switches .. 68

B.1 NVCC ... 68

Appendix C. Revision History ... 69

C.1 Version 3.0... 69

C.2 Version 3.1... 70

C.3 Version 3.2... 70

C.4 Version 4.0... 70

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | v

LIST OF FIGURES

Figure 1.1. Sample CUDA Configuration Data Reported by deviceQuery 8

Figure 1.2. Compatibility of CUDA versions ... 9

Figure 3.1. Timeline Comparison for Sequential (top) and Concurrent (bottom) Copy and
Kernel Execution ... 22

Figure 3.2. Memory Spaces on a CUDA Device ... 24

Figure 3.3. Linear Memory Segments and Threads in a Half Warp 25

Figure 3.4. Coalesced Access–All Threads but One Access the Corresponding Word in a
Segment ... 26

Figure 3.5. Unaligned Sequential Addresses that Fit within a Single 128-Byte Segment........... 27

Figure 3.6. Misaligned Sequential Addresses that Fall within Two 128-Byte Segments 27

Figure 3.7. Performance of offsetCopy kernel ... 28

Figure 3.8. A half warp accessing memory with a stride of 2 .. 30

Figure 3.9. Performance of strideCopy Kernel .. 30

Figure 3.10. Block-Column Matrix (A) Multiplied by Block-Row Matrix (B) with Resulting Product
Matrix (C) ... 33

Figure 3.11. Computing a Row (Half Warp) of a Tile In C Using One Row of A and an Entire
Tile of B ... 34

Figure 3.12. Results of Using Texture Memory to Avoid Uncoalesced Global Memory Access 41

Figure 4.1. CUDA GPU Occupancy Calculator Usage to Project Occupancy 46

LIST OF TABLES

Table 3.1 Salient Features of Device Memory ... 24

Table 3.2 Performance Improvements Optimizing C = AB Matrix Multiply 36

Table 3.3 Performance Improvements Optimizing C = AAT Matrix Multiplication.................. 38

Table 3.4 Useful Features for tex1D(), tex2D(), and tex3D() Fetches 41

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 1

PREFACE

WHAT IS THIS DOCUMENT?

This Best Practices Guide is a manual to help developers obtain the best performance

from the NVIDIA® CUDA™ architecture using version 4.0 of the CUDA Toolkit. It

presents established optimization techniques and explains coding metaphors and idioms

that can greatly simplify programming for the CUDA architecture.

While the contents can be used as a reference manual, you should be aware that some

topics are revisited in different contexts as various programming and configuration

topics are explored. As a result, it is recommended that first-time readers proceed

through the guide sequentially. This approach will greatly improve your understanding

of effective programming practices and enable you to better use the guide for reference

later.

WHO SHOULD READ THIS GUIDE?

This guide is intended for programmers who have a basic familiarity with the CUDA

programming environment. You have already downloaded and installed the CUDA

Toolkit and have written successful programs using it. The discussions in this guide all

use the C programming language, so you should be comfortable reading C.

This guide refers to and relies on several other documents that you should have at your

disposal for reference, all of which are available at no cost from the CUDA website

http:/www.nvidia.com/object/cuda_develop.html. The following documents are

especially important resources:

 CUDA Quickstart Guide

 CUDA C Programming Guide

http://www.nvidia.com/object/cuda_develop.html

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 2

 CUDA Reference Manual

Be sure to download the correct manual for the CUDA Toolkit version and operating

system you are using.

RECOMMENDATIONS AND BEST PRACTICES

Throughout this guide, specific recommendations are made regarding the design and

implementation of CUDA C code. These recommendations are categorized by priority,

which is a blend of the effect of the recommendation and its scope. Actions that present

substantial improvements for most CUDA applications have the highest priority, while

small optimizations that affect only very specific situations are given a lower priority.

Before implementing lower priority recommendations, it is good practice to make sure

all higher priority recommendations that are relevant have already been applied. This

approach will tend to provide the best results for the time invested and will avoid the

trap of premature optimization.

The criteria of benefit and scope for establishing priority will vary depending on the

nature of the program. In this guide, they represent a typical case. Your code might

reflect different priority factors. Regardless of this possibility, it is good practice to verify

that no higher-priority recommendations have been overlooked before undertaking

lower-priority items.

Appendix A of this document lists all the recommendations and best practices, grouping

them by priority and adding some additional helpful observations.

Code samples throughout the guide omit error checking for conciseness. Production

code should, however, systematically check the error code returned by each API call and

check for failures in kernel launches (or groups of kernel launches in the case of

concurrent kernels) by calling cudaGetLastError().

CONTENTS

The remainder of this guide is divided into the following sections:

 Parallel Computing with CUDA: Important aspects of the parallel programming

architecture.

 Performance Metrics: How should performance be measured in CUDA applications

and what are the factors that most influence performance?

 Memory Optimizations: Correct memory management is one of the most effective

means of improving performance. This chapter explores the different kinds of

memory available to CUDA applications.

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 3

 Execution Configuration Optimizations: How to make sure your CUDA application is

exploiting all the available resources on the GPU.

 Instruction Optimizations: Certain operations run faster than others. Using faster

operations and avoiding slower ones often confers remark¬able benefits.

 Control Flow: Carelessly designed control flow can force parallel code into serial

execution; whereas thoughtfully designed control flow can help the hardware

perform the maximum amount of work per clock cycle.

 Getting the Right Answer: How to debug code and how to handle differences in how

the CPU and GPU represent floating-point values.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 4

Chapter 1.
PARALLEL COMPUTING WITH CUDA

This chapter reviews heterogeneous computing with CUDA, explains the limits of

performance improvement, and helps you choose the right version of CUDA and which

application programming interface (API) to use when programming.

1.1 HETEROGENEOUS COMPUTING WITH CUDA

CUDA C programming involves running code on two different platforms concurrently:

a host system with one or more CPUs and one or more devices (frequently graphics

adapter cards) with CUDA-enabled NVIDIA GPUs.

While NVIDIA devices are frequently associated with rendering graphics, they are also

powerful arithmetic engines capable of running thousands of lightweight threads in

parallel. This capability makes them well suited to computations that can leverage

parallel execution well.

However, the device is based on a distinctly different design from the host system, and

it’s important to understand those differences and how they determine the performance

of CUDA applications to use CUDA effectively.

1.1.1 Differences Between Host and Device

The primary differences occur in threading and memory access:

 Threading resources. Execution pipelines on host systems can support a limited

number of concurrent threads. Servers that have four quad-core processors today can

run only 16 threads concurrently (32 if the CPUs support HyperThreading.) By

comparison, the smallest executable unit of parallelism on a CUDA device comprises

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 5

32 threads (a warp). All NVIDIA GPUs can support at least 768 concurrently active

threads per multiprocessor, and some GPUs support 1,024 or more active threads per

multiprocessor (see Section F.1 of the CUDA C Programming Guide). On devices that

have 30 multiprocessors (such as the NVIDIA® GeForce® GTX 280), this leads to more

than 30,000 active threads.

 Threads. Threads on a CPU are generally heavyweight entities. The operating system

must swap threads on and off of CPU execution channels to provide multithreading

capability. Context switches (when two threads are swapped) are therefore slow and

expensive. By comparison, threads on GPUs are extremely lightweight. In a typical

system, thousands of threads are queued up for work (in warps of 32 threads each). If

the GPU must wait on one warp of threads, it simply begins executing work on

another. Because separate registers are allocated to all active threads, no swapping of

registers or state need occur between GPU threads. Resources stay allocated to each

thread until it completes its execution.

 RAM. Both the host system and the device have RAM. On the host system, RAM is

generally equally accessible to all code (within the limitations enforced by the

operating system). On the device, RAM is divided virtually and physically into

different types, each of which has a special purpose and fulfills different needs. The

types of device RAM are explained in the CUDA C Programming Guide and in Chapter

3 of this document.

These are the primary hardware differences between CPU hosts and GPU devices with

respect to parallel programming. Other differences are discussed as they arise elsewhere

in this document.

1.1.2 What Runs on a CUDA-Enabled Device?

Because of the considerable differences between the host and the device, it’s important

to partition applications so that each hardware system is doing the work it does best.

The following issues should be considered when determining what parts of an

application to run on the device:

 The device is ideally suited for computations that can be run on numerous data

elements simultaneously in parallel. This typically involves arithmetic on large data

sets (such as matrices) where the same operation can be performed across thousands,

if not millions, of elements at the same time. This is a requirement for good

performance on CUDA: the software must use a large number of threads. The

support for running numerous threads in parallel derives from the CUDA

architecture’s use of a lightweight threading model.

 There should be some coherence in memory access by device code. Certain memory

access patterns enable the hardware to coalesce groups of reads or writes of multiple

data items into one operation. Data that cannot be laid out so as to enable coalescing,

or that doesn’t have enough locality to use textures or L1 efficiently, will not enjoy

much of a performance benefit when used in computations on CUDA.

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 6

 To use CUDA, data values must be transferred from the host to the device along the

PCI Express (PCIe) bus. These transfers are costly in terms of performance and should

be minimized. (See Section 3.1.) This cost has several ramifications:

● The complexity of operations should justify the cost of moving data to and from

the device. Code that transfers data for brief use by a small number of threads will

see little or no performance benefit. The ideal scenario is one in which many

threads perform a substantial amount of work.

For example, transferring two matrices to the device to perform a matrix addition

and then transferring the results back to the host will not realize much

performance benefit. The issue here is the number of operations performed per

data element transferred. For the preceding procedure, assuming matrices of size

N×N, there are N2 operations (additions) and 3N2 elements transferred, so the ratio

of operations to elements transferred is 1:3 or O(1). Performance benefits can be

more readily achieved when this ratio is higher. For example, a matrix

multiplication of the same matrices requires N3 operations (multiply-add), so the

ratio of operations to elements transferred is O(N), in which case the larger the

matrix the greater the performance benefit. The types of operations are an

additional factor, as additions have different complexity profiles than, for example,

trigonometric functions. It is important to include the overhead of transferring

data to and from the device in determining whether operations should be

performed on the host or on the device.

● Data should be kept on the device as long as possible. Because transfers should be

minimized, programs that run multiple kernels on the same data should favor

leaving the data on the device between kernel calls, rather than transferring

intermediate results to the host and then sending them back to the device for

subsequent calculations. So, in the previous example, had the two matrices to be

added already been on the device as a result of some previous calculation, or if the

results of the addition would be used in some subsequent calculation, the matrix

addition should be performed locally on the device. This approach should be used

even if one of the steps in a sequence of calculations could be performed faster on

the host. Even a relatively slow kernel may be advantageous if it avoids one or

more PCIe transfers. Section 3.1 provides further details, including the

measurements of bandwidth between the host and the device versus within the

device proper.

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 7

1.1.3 Maximum Performance Benefit

High Priority: To get the maximum benefit from CUDA, focus first on finding ways
to parallelize sequential code.

The amount of performance benefit an application will realize by running on CUDA

depends entirely on the extent to which it can be parallelized. As mentioned previously,

code that cannot be sufficiently parallelized should run on the host, unless doing so

would result in excessive transfers between the host and the device.

Amdahl’s law specifies the maximum speed-up that can be expected by parallelizing

portions of a serial program. Essentially, it states that the maximum speed-up (S) of a

program is :

where P is the fraction of the total serial execution time taken by the portion of code that

can be parallelized and N is the number of processors over which the parallel portion of

the code runs.

The larger N is (that is, the greater the number of processors), the smaller the P/N

fraction. It can be simpler to view N as a very large number, which essentially

transforms the equation into S = 1 / 1 P. Now, if ¾ of a program is parallelized, the

maximum speed-up over serial code is 1 / (1 – ¾) = 4.

For most purposes, the key point is that the greater P is, the greater the speed-up. An

additional caveat is implicit in this equation, which is that if P is a small number (so not

substantially parallel), increasing N does little to improve performance. To get the

largest lift, best practices suggest spending most effort on increasing P; that is, by

maximizing the amount of code that can be parallelized.

1.2 UNDERSTANDING THE PROGRAMMING
ENVIRONMENT

With each generation of NVIDIA processors, new features are added to the GPU that

CUDA can leverage. Consequently, it’s important to understand the characteristics of

the architecture.

Programmers should be aware of two version numbers. The first is the compute

capability, and the second is the version number of the CUDA Runtime and CUDA

Driver APIs.

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 8

1.2.1 CUDA Compute Capability

The compute capability describes the features of the hardware and reflects the set of

instructions supported by the device as well as other specifications, such as the

maximum number of threads per block and the number of registers per multiprocessor.

Higher compute capability versions are supersets of lower (that is, earlier) versions, and

so they are backward compatible.

The compute capability of the GPU in the device can be queried programmatically as

illustrated in the CUDA SDK in the deviceQuery sample. The output for that program is

shown in Figure 1.1. This information is obtained by calling cudaGetDeviceProperties()

and accessing the information in the structure it returns.

Figure 1.1 Sample CUDA Configuration Data Reported by deviceQuery

The major and minor revision numbers of the compute capability are shown on the third

and fourth lines of Figure 1.1. Device 0 of this system has compute capability 1.1.

More details about the compute capabilities of various GPUs are in Appendices A and F

of the CUDA C Programming Guide. In particular, developers should note the number of

multiprocessors on the device, the number of registers and the amount of memory

available, and any special capabilities of the device.

1.2.2 Additional Hardware Data

Certain hardware features are not described by the compute capability. For example, the

ability to overlap kernel execution with asynchronous data transfers between the host

and the device is available on most but not all GPUs with compute capability 1.1. In such

cases, call cudaGetDeviceProperties() to determine whether the device is capable of a

certain feature. For example, the deviceOverlap field of the device property structure

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 9

indicates whether overlapping kernel execution and data transfers is possible (displayed

in the “Concurrent copy and execution” line of Figure 1.1); likewise, the

canMapHostMemory field indicates whether zero-copy data transfers can be performed.

1.2.3 CUDA Runtime and CUDA Driver API Version

The CUDA Driver API and the CUDA Runtime are two of the programming interfaces

to CUDA. Their version number enables developers to check the features associated

with these APIs and decide whether an application requires a newer (later) version than

the one currently installed. This is important because the CUDA Driver API is backward

compatible but not forward compatible, meaning that applications, plug-ins, and libraries

(including the CUDA Runtime) compiled against a particular version of the Driver API

will continue to work on subsequent (later) driver releases. However, applications, plug-

ins, and libraries (including the CUDA Runtime) compiled against a particular version

of the Driver API may not work on earlier versions of the driver, as illustrated in Figure

1.2.

1.0

Driver

Apps,

Libs &

Plug-ins

1.1

Driver

Apps,

Libs &

Plug-ins

2.0

Driver

Apps,

Libs &

Plug-ins

Compatible Incompatible

...

...

Figure 1.2 Compatibility of CUDA versions

1.2.4 Which Version to Target

When in doubt about the compute capability of the hardware that will be present at

runtime, it is best to assume a compute capability of 1.0 as defined in the CUDA C

Programming Guide, Section F.1.

To target specific versions of NVIDIA hardware and CUDA software, use the

–arch, -code, and –gencode options of nvcc. Code that contains double-precision

arithmetic, for example, must be compiled with “-arch=sm_13” (or higher compute

capability), otherwise double-precision arithmetic will get demoted to single-precision

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 10

arithmetic (see Section 7.2.1). This and other compiler switches are discussed further in

Appendix B.

1.3 CUDA APIS

The host runtime component of the CUDA software environment can be used only by

host functions. It provides functions to handle the following:

 Device management

 Context management

 Memory management

 Code module management

 Execution control

 Texture reference management

 Interoperability with OpenGL and Direct3D

It comprises two APIs:

 A low-level API called the CUDA Driver API

 A higher-level API called the CUDA Runtime API that is implemented on top of the

CUDA Driver API

Since version 3.1 of the CUDA software, these APIs are interoperable; applications can

do most operations in the more streamlined CUDA Runtime API while seamlessly

interoperating with the lower-level interfaces provided by the CUDA Driver API on an

as-needed basis.

Most commonly, applications will use the CUDA Runtime API, which greatly eases

device management by providing implicit initialization, context management, and

device code module management.

In contrast, while the CUDA Driver API offers more explicit control in certain limited

circumstances, it requires more code and is somewhat harder to program. For example,

it is more difficult to configure and launch kernels using the CUDA Driver API, since the

execution configuration and kernel parameters must be specified with explicit function

calls instead of the execution configuration syntax (<<<…>>>).

The C/C++ host code generated by nvcc utilizes the CUDA Runtime, so applications that

link to this code will depend on the CUDA Runtime; similarly, any code that uses the

CUBLAS, CUFFT, and other CUDA Toolkit libraries will also depend on the CUDA

Runtime, which is used internally by these libraries.

The two APIs can be easily distinguished: the CUDA Driver API is delivered through

the nvcuda/libcuda dynamic library and all its entry points are prefixed with cu; while

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 11

the CUDA Runtime is delivered through the cudart dynamic library and all its entry

points are prefixed with cuda. Note that the APIs relate only to host code; the kernels

that are executed on the device are the same, regardless of which API is used.

The functions that make up these two APIs are explained in the CUDA Reference Manual.

1.3.1 CUDA Runtime API

The CUDA Runtime handles kernel loading and setting up kernel parameters and

launch configuration before the kernel is launched. The implicit code initialization,

CUDA context management, CUDA module management (cubin to function mapping),

kernel configuration, and parameter passing are all performed by the CUDA Runtime.

It comprises two principal parts:

 A C-style function interface (cuda_runtime_api.h).

 C++-style convenience wrappers (cuda_runtime.h) built on top of the C-style

functions.

For more information on the Runtime API, refer to Section 3.2 of the CUDA C

Programming Guide.

1.3.2 CUDA Driver API

The Driver API is a lower-level API than the Runtime API. The Driver API has these

advantages:

 More control over device contexts

 No C extensions in the host code, so the host code can be compiled with compilers

other than nvcc and the host compiler it calls by default

Its primary disadvantages are as follows:

 Much more verbose code

 Linking against the CUDA Driver library requires additional application complexity,

since the driver may or may not be installed on a given target machine

 Requires explicit management of device contexts and device code modules

For more information on the Driver API, refer to Section 3.3 of the CUDA C Programming

Guide.

1.3.3 When to Use Which API

The previous section lists some of the salient differences between the two APIs. A key

point is that for every Runtime API function, there is an equivalent Driver API function.

The Driver API does include a few functions omitted from the Runtime API, such as

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 12

functions for the explicit management of CUDA contexts, but most applications will not

need these additional functions (and, when they do, driver/runtime interoperability

allows the selective use of these functions on an as-needed basis), so use of the Runtime

API for most purposes is generally preferred.

1.3.4 Comparing Code for Different APIs

To illustrate the difference in code between the Runtime and Driver APIs, compare

Listings 1.1 and 1.2, which are examples of a vector addition in which two arrays are

added.

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;

// create CUDA device & context

cudaSetDevice(0); // pick first device

// allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

// initialize host memory

randomInit(pA, cnDimension);

randomInit(pB, cnDimension);

// allocate device memory

float *pDeviceMemA, *pDeviceMemB, *pDeviceMemC;

cudaMalloc(&pDeviceMemA, cnDimension * sizeof(float));

cudaMalloc(&pDeviceMemB, cnDimension * sizeof(float));

cudaMalloc(&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device

cudaMemcpy(pDeviceMemA, pA, cnDimension * sizeof(float),

 cudaMemcpyHostToDevice);

cudaMemcpy(pDeviceMemB, pB, cnDimension * sizeof(float),

 cudaMemcpyHostToDevice);

vectorAdd<<<cnBlocks, cnBlockSize>>> (pDeviceMemA, pDeviceMemB,

 pDeviceMemC);

// copy result from device to host

cudaMemcpy ((void *) pC, pDeviceMemC, cnDimension * sizeof(float),

 cudaMemcpyDeviceToHost);

delete[] pA;

delete[] pB;

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 13

delete[] pC;

cudaFree(pDeviceMemA);

cudaFree(pDeviceMemB);

cudaFree(pDeviceMemC);

Listing 1.1 Host code for adding two vectors using the CUDA Runtime

Listing 1.1 consists of 27 lines of code. Listing 1.2 shows the same functionality

implemented using the CUDA Driver API.

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;

CUdevice hDevice;

CUcontext hContext;

CUmodule hModule;

CUfunction hFunction;

// create CUDA device & context

cuInit(0);

cuDeviceGet(&hContext, 0); // pick first device

cuCtxCreate(&hContext, 0, hDevice));

cuModuleLoad(&hModule, “vectorAdd.cubin”);

cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

// allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

// initialize host memory

randomInit(pA, cnDimension);

randomInit(pB, cnDimension);

// allocate memory on the device

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC;

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));

// set up parameter values

cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1);

#define ALIGN_UP(offset, alignment) \

Parallel Computing with CUDA

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 14

 (offset) = ((offset) + (alignment) – 1) & ~((alignment) – 1)

int offset = 0;

ALIGN_UP(offset, __alignof(pDeviceMemA));

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemA));

offset += sizeof(pDeviceMemA);

ALIGN_UP(offset, __alignof(pDeviceMemB));

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemB));

offset += sizeof(pDeviceMemB);

ALIGN_UP(offset, __alignof(pDeviceMemC));

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemC));

offset += sizeof(pDeviceMemC);

cuParamSetSize(cuFunction, offset);

// execute kernel

cuLaunchGrid(cuFunction, cnBlocks, 1);

// copy the result from device back to host

cuMemcpyDtoH((void *) pC, pDeviceMemC,

 cnDimension * sizeof(float));

delete[] pA;

delete[] pB;

delete[] pC;

cuMemFree(pDeviceMemA);

cuMemFree(pDeviceMemB);

cuMemFree(pDeviceMemC);

Listing 1.2 Host code for adding two vectors using the CUDA Driver API

Listing 1.2 contains 50 lines of code and performs several lower-level operations than the

Runtime API. These additional calls are evident in several places, especially the setup

necessary in the Driver API prior to the kernel launch.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 15

Chapter 2.
PERFORMANCE METRICS

When attempting to optimize CUDA code, it pays to know how to measure performance

accurately and to understand the role that bandwidth plays in performance

measurement. This chapter discusses how to correctly measure performance using CPU

timers and CUDA events. It then explores how bandwidth affects performance metrics

and how to mitigate some of the challenges it poses.

2.1 TIMING

CUDA calls and kernel executions can be timed using either CPU or GPU timers. This

section examines the functionality, advantages, and pitfalls of both approaches.

2.1.1 Using CPU Timers

Any CPU timer can be used to measure the elapsed time of a CUDA call or kernel

execution. The details of various CPU timing approaches are outside the scope of this

document, but developers should always be aware of the resolution their timing calls

provide.

When using CPU timers, it is critical to remember that many CUDA API functions are

asynchronous; that is, they return control back to the calling CPU thread prior to

completing their work. All kernel launches are asynchronous, as are memory-copy

functions with the Async suffix on their names. Therefore, to accurately measure the

elapsed time for a particular call or sequence of CUDA calls, it is necessary to

synchronize the CPU thread with the GPU by calling cudaThreadSynchronize()

immediately before starting and stopping the CPU timer.

Performance Metrics

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 16

cudaThreadSynchronize()blocks the calling CPU thread until all CUDA calls previously

issued by the thread are completed.

Although it is also possible to synchronize the CPU thread with a particular stream or

event on the GPU, these synchronization functions are not suitable for timing code in

streams other than the default stream. cudaStreamSynchronize() blocks the CPU thread

until all CUDA calls previously issued into the given stream have completed.

cudaEventSynchronize() blocks until a given event in a particular stream has been

recorded by the GPU. Because the driver may interleave execution of CUDA calls from

other non-default streams, calls in other streams may be included in the timing.

Because the default stream, stream 0, exhibits synchronous behavior (an operation in the

default stream can begin only after all preceding calls in any stream have completed;

and no subsequent operation in any stream can begin until it finishes), these functions

can be used reliably for timing in the default stream.

Be aware that CPU-to-GPU synchronization points such as those mentioned in this

section imply a stall in the GPU’s processing pipeline and should thus be used sparingly

to minimize their performance impact.

2.1.2 Using CUDA GPU Timers

The CUDA event API provides calls that create and destroy events, record events (via

timestamp), and convert timestamp differences into a floating-point value in

milliseconds. Listing 2.1 illustrates their use.

cudaEvent_t start, stop;

float time;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata, size_x, size_y,

 NUM_REPS);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

Listing 2.1 How to time code using CUDA events

Here cudaEventRecord() is used to place the start and stop events into the default

stream, stream 0. The device will record a timestamp for the event when it reaches that

event in the stream. The cudaEventElapsedTime() function returns the time elapsed

between the recording of the start and stop events. This value is expressed in

Performance Metrics

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 17

milliseconds and has a resolution of approximately half a microsecond. Like the other

calls in this listing, their specific operation, parameters, and return values are described

in the CUDA Reference Manual. Note that the timings are measured on the GPU clock, so

the timing resolution is operating-system-independent.

2.2 BANDWIDTH

Bandwidth—the rate at which data can be transferred—is one of the most important

gating factors for performance. Almost all changes to code should be made in the

context of how they affect bandwidth. As described in Chapter 3 of this guide,

bandwidth can be dramatically affected by the choice of memory in which data is stored,

how the data is laid out and the order in which it is accessed, as well as other factors.

To measure performance accurately, it is useful to calculate theoretical and effective

bandwidth. When the latter is much lower than the former, design or implementation

details are likely to reduce bandwidth, and it should be the primary goal of subsequent

optimization efforts to increase it.

High Priority: Use the effective bandwidth of your computation as a metric when
measuring performance and optimization benefits.

2.2.1 Theoretical Bandwidth Calculation

Theoretical bandwidth can be calculated using hardware specifications available in the

product literature. For example, the NVIDIA GeForce GTX 280 uses DDR (double data

rate) RAM with a memory clock rate of 1,107 MHz and a 512-bit wide memory interface.

Using these data items, the peak theoretical memory bandwidth of the NVIDIA GeForce

GTX 280 is 141.6 GB/sec:

(1107 x 106 x (512/8) x 2) / 109 = 141.6 GB/sec

In this calculation, the memory clock rate is converted in to Hz, multiplied by the

interface width (divided by 8, to convert bits to bytes) and multiplied by 2 due to the

double data rate. Finally, this product is divided by 109 to convert the result to GB/sec

(GBps).

Note that some calculations use 1,0243 instead of 109 for the final calculation. In such a

case, the bandwidth would be 131.9 GBps. It is important to use the same divisor when

calculating theoretical and effective bandwidth so that the comparison is valid.

Performance Metrics

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 18

2.2.2 Effective Bandwidth Calculation

Effective bandwidth is calculated by timing specific program activities and by knowing

how data is accessed by the program. To do so, use this equation:

Effective bandwidth = ((Br + Bw) / 109) / time

Here, the effective bandwidth is in units of GBps, Br is the number of bytes read per

kernel, Bw is the number of bytes written per kernel, and time is given in seconds.

For example, to compute the effective bandwidth of a 2048 x 2048 matrix copy, the

following formula could be used:

Effective bandwidth = ((20482 x 4 x 2) / 109) / time

The number of elements is multiplied by the size of each element (4 bytes for a float),

multiplied by 2 (because of the read and write), divided by 109 (or 1,0243) to obtain GB of

memory transferred. This number is divided by the time in seconds to obtain GBps.

2.2.3 Throughput Reported by cudaprof

The memory throughput reported in the summary table of cudaprof, the CUDA Visual

Profiler, differs from the effective bandwidth obtained by the calculation in Section 2.2.2

in several respects.

The first difference is that cudaprof measures throughput using a subset of the GPU’s

multiprocessors and then extrapolates that number to the entire GPU, thus reporting an

estimate of the data throughput.

The second and more important difference is that because the minimum memory

transaction size is larger than most word sizes, the memory throughput reported by the

profiler includes the transfer of data not used by the kernel.

The effective bandwidth calculation in Section 2.2.2, however, includes only data

transfers that are relevant to the algorithm. As such, the effective bandwidth will be

smaller than the memory throughput reported by cudaprof and is the number to use

when optimizing memory performance.

However, it’s important to note that both numbers are useful. The profiler memory

throughput shows how close the code is to the hardware limit, and the comparison of

the effective bandwidth with the profiler number presents a good estimate of how much

bandwidth is wasted by suboptimal coalescing of memory accesses.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 19

Chapter 3.
MEMORY OPTIMIZATIONS

Memory optimizations are the most important area for performance. The goal is to

maximize the use of the hardware by maximizing bandwidth. Bandwidth is best served

by using as much fast memory and as little slow-access memory as possible. This

chapter discusses the various kinds of memory on the host and device and how best to

set up data items to use the memory effectively.

3.1 DATA TRANSFER BETWEEN HOST AND
DEVICE

The peak bandwidth between the device memory and the GPU is much higher

(141 GBps on the NVIDIA GeForce GTX 280, for example) than the peak bandwidth

between host memory and device memory (8 GBps on the PCIe ×16 Gen2). Hence, for

best overall application performance, it is important to minimize data transfer between

the host and the device, even if that means running kernels on the GPU that do not

demonstrate any speed-up compared with running them on the host CPU.

High Priority: Minimize data transfer between the host and the device, even if it
means running some kernels on the device that do not show performance gains
when compared with running them on the host CPU.

Intermediate data structures should be created in device memory, operated on by the

device, and destroyed without ever being mapped by the host or copied to host

memory.

Also, because of the overhead associated with each transfer, batching many small

transfers into one larger transfer performs significantly better than making each transfer

separately.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 20

Finally, higher bandwidth between the host and the device is achieved when using page-

locked (or pinned) memory, as discussed in the CUDA C Programming Guide and Section

3.1.1 of this document.

3.1.1 Pinned Memory

Page-locked or pinned memory transfers attain the highest bandwidth between the host

and the device. On PCIe ×16 Gen2 cards, for example, pinned memory can attain greater

than 5 GBps transfer rates.

Pinned memory is allocated using the cudaMallocHost()or cudaHostAlloc() functions in

the Runtime API. The bandwidthTest.cu program in the CUDA SDK shows how to use

these functions as well as how to measure memory transfer performance.

Pinned memory should not be overused. Excessive use can reduce overall system

performance because pinned memory is a scarce resource. How much is too much is

difficult to tell in advance, so as with all optimizations, test the applications and the

systems they run on for optimal performance parameters.

3.1.2 Asynchronous Transfers and Overlapping
Transfers with Computation

Data transfers between the host and the device using cudaMemcpy() are blocking

transfers; that is, control is returned to the host thread only after the data transfer is

complete. The cudaMemcpyAsync() function is a non-blocking variant of cudaMemcpy() in

which control is returned immediately to the host thread. In contrast with cudaMemcpy(),

the asynchronous transfer version requires pinned host memory (see Section 3.1.1), and it

contains an additional argument, a stream ID. A stream is simply a sequence of

operations that are performed in order on the device. Operations in different streams

can be interleaved and in some cases overlapped—a property that can be used to hide

data transfers between the host and the device.

Asynchronous transfers enable overlap of data transfers with computation in two

different ways. On all CUDA-enabled devices, it is possible to overlap host computation

with asynchronous data transfers and with device computations. For example, Listing

3.1 demonstrates how host computation in the routine cpuFunction() is performed

while data is transferred to the device and a kernel using the device is executed.

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a_d);

cpuFunction();

Listing 3.1 Overlapping computation and data transfers

The last argument to the cudaMemcpyAsync() function is the stream ID, which in this case

uses the default stream, stream 0. The kernel also uses the default stream, and it will not

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 21

begin execution until the memory copy completes; therefore, no explicit synchronization

is needed. Because the memory copy and the kernel both return control to the host

immediately, the host function cpuFunction() overlaps their execution.

In Listing 3.1, the memory copy and kernel execution occur sequentially. On devices that

are capable of “concurrent copy and execute,” it is possible to overlap kernel execution

on the device with data transfers between the host and the device. Whether a device has

this capability is indicated by the deviceOverlap field of a cudaDeviceProp variable (or

listed in the output of the deviceQuery SDK sample). On devices that have this

capability, the overlap once again requires pinned host memory, and, in addition, the

data transfer and kernel must use different, non-default streams (streams with non-zero

stream IDs). Non-default streams are required for this overlap because memory copy,

memory set functions, and kernel calls that use the default stream begin only after all

preceding calls on the device (in any stream) have completed, and no operation on the

device (in any stream) commences until they are finished.

Listing 3.2 illustrates the basic technique.

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream1);

kernel<<<grid, block, 0, stream2>>>(otherData_d);

Listing 3.2 Concurrent copy and execute

In this code, two streams are created and used in the data transfer and kernel executions

as specified in the last arguments of the cudaMemcpyAsync call and the kernel’s execution

configuration.

Listing 3.2 demonstrates how to overlap kernel execution with asynchronous data

transfer. This technique could be used when the data dependency is such that the data

can be broken into chunks and transferred in multiple stages, launching multiple kernels

to operate on each chunk as it arrives. Listings 3.3a and 3.3b demonstrate this. They

produce equivalent results. The first segment shows the reference sequential

implementation, which transfers and operates on an array of N floats (where N is

assumed to be evenly divisible by nThreads).

cudaMemcpy(a_d, a_h, N*sizeof(float), dir);

kernel<<<N/nThreads, nThreads>>>(a_d);

Listing 3.3a Sequential copy and execute

Listing 3.3b shows how the transfer and kernel execution can be broken up into

nStreams stages. This approach permits some overlapping of the data transfer and

execution.

size=N*sizeof(float)/nStreams;

for (i=0; i<nStreams; i++) {

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 22

 offset = i*N/nStreams;

 cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]);

}

for (i=0; i<nStreams; i++) {

 offset = i*N/nStreams;

 kernel<<<N/(nThreads*nStreams), nThreads,

 0, stream[i]>>>(a_d+offset);

}

Listing 3.3b Staged concurrent copy and execute

(In Listing 3.3b, it is assumed that N is evenly divisible by nThreads*nStreams.) Because

execution within a stream occurs sequentially, none of the kernels will launch until the

data transfers in their respective streams complete. Current hardware can

simultaneously process an asynchronous data transfer and execute kernels. (It should be

mentioned that it is not possible to overlap a blocking transfer with an asynchronous

transfer, because the blocking transfer occurs in the default stream, and so it will not

begin until all previous CUDA calls complete. It will not allow any other CUDA call to

begin until it has completed.) A diagram depicting the timeline of execution for the two

code segments is shown in Figure 3.1, and nStreams=4 for Listing 3.3b is shown in the

bottom half.

Figure 3.1 Timeline Comparison for Sequential (top) and Concurrent
(bottom) Copy and Kernel Execution

For this example, it is assumed that the data transfer and kernel execution times are

comparable. In such cases, and when the execution time (tE) exceeds the transfer time

(tT), a rough estimate for the overall time is tE + tT/nStreams for the staged version versus

tE + tT for the sequential version. If the transfer time exceeds the execution time, a rough

estimate for the overall time is tT + tE/nStreams.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 23

3.1.3 Zero Copy

Zero copy is a feature that was added in version 2.2 of the CUDA Toolkit. It enables GPU

threads to directly access host memory. For this purpose, it requires mapped pinned

(non-pageable) memory. On integrated GPUs (e.g., mobile GPUs for notebooks),

mapped pinned memory is always a performance gain because it avoids superfluous

copies as integrated GPU and CPU memory are physically the same. On discrete GPUs,

mapped pinned memory is advantageous only in certain cases. Because the data is not

cached on the GPU on devices of compute capability 1.x, mapped pinned memory

should be read or written only once, and the global loads and stores that read and write

the memory should be coalesced. Zero copy can be used in place of streams because

kernel-originated data transfers automatically overlap kernel execution without the

overhead of setting up and determining the optimal number of streams.

 Low Priority: Use zero-copy operations on integrated GPUs for CUDA Toolkit
version 2.2 and later.

The host code in Listing 3.4 shows how zero copy is typically set up.

float *a_h, *a_map;

…

cudaGetDeviceProperties(&prop, 0);

if (!prop.canMapHostMemory)

 exit(0);

cudaSetDeviceFlags(cudaDeviceMapHost);

cudaHostAlloc(&a_h, nBytes, cudaHostAllocMapped);

cudaHostGetDevicePointer(&a_map, a_h, 0);

kernel<<<gridSize, blockSize>>>(a_map);

Listing 3.4 Zero-copy host code

In this code, the canMapHostMemory field of the structure returned by

cudaGetDeviceProperties() is used to check that the device supports mapping host

memory to the device’s address space. Page-locked memory mapping is enabled by

calling cudaSetDeviceFlags() with cudaDeviceMapHost. Note that cudaSetDeviceFlags()

must be called prior to setting a device or making a CUDA call that requires state (that

is, essentially, before a context is created). Page-locked mapped host memory is

allocated using cudaHostAlloc(), and the pointer to the mapped device address space is

obtained via the function cudaHostGetDevicePointer(). In the code in Listing 3.4,

kernel() can reference the mapped pinned host memory using the pointer a_map in

exactly the same was as it would if a_map referred to a location in device memory.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 24

3.2 DEVICE MEMORY SPACES

CUDA devices use several memory spaces, which have different characteristics that

reflect their distinct usages in CUDA applications. These memory spaces include global,

local, shared, texture, and registers, as shown in Figure 3.2.

Figure 3.2 Memory Spaces on a CUDA Device

Of these different memory spaces, global and texture memory are the most plentiful; see

Section F.1 of the CUDA C Programming Guide for the amounts of memory available in

each memory space at each compute capability level. Global, local, and texture memory

have the greatest access latency, followed by constant memory, registers, and shared

memory.

The various principal traits of the memory types are shown in Table 3.1.

Table 3.1 Salient Features of Device Memory

Memory Location

on/off chip

Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off † R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off † R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

† Cached only on devices of compute capability 2.x.

To Host

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 25

In the case of texture access, if a texture reference is bound to a linear (and, as of version

2.2 of the CUDA Toolkit, pitch-linear) array in global memory, then the device code can

write to the underlying array. Reading from a texture while writing to its underlying

global memory array in the same kernel launch should be avoided because the texture

caches are read-only and are not invalidated when the associated global memory is

modified.

3.2.1 Coalesced Access to Global Memory

High Priority: Ensure global memory accesses are coalesced whenever possible.

Perhaps the single most important performance consideration in programming for the

CUDA architecture is coalescing global memory accesses. Global memory loads and

stores by threads of a half warp (for devices of compute capability 1.x) or of a warp (for

devices of compute capability 2.x) are coalesced by the device into as few as one

transaction when certain access requirements are met.

To understand these access requirements, global memory should be viewed in terms of

aligned segments of 16 and 32 words. Figure 3.3 helps explain the coalescing of 32-bit

words (such as floats) by a half warp. It shows global memory as rows of 64-byte

aligned segments (16 floats). Two rows of the same color represent a 128-byte aligned

segment. A half warp of threads that accesses the global memory is indicated at the

bottom of the figure. Note that this figure assumes a device of compute capability 1.x.

Figure 3.3 Linear Memory Segments and Threads in a Half Warp

The access requirements for coalescing depend on the compute capability of the device:

 On devices of compute capability 1.0 or 1.1, the k-th thread in a half warp must access

the k-th word in a segment aligned to 16 times the size of the elements being accessed;

however, not all threads need to participate.

 On devices of compute capability 1.2 or 1.3, coalescing is achieved for any pattern of

accesses that fits into a segment size of 32 bytes for 8-bit words, 64 bytes for 16-bit

words, or 128 bytes for 32- and 64-bit words. Smaller transactions may be issued to

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 26

avoid wasting bandwidth. More precisely, the following protocol is used to issue a

memory transaction for a half warp:

● Find the memory segment that contains the address requested by the lowest

numbered active thread. Segment size is 32 bytes for 8-bit data, 64 bytes for 16-bit

data, and 128 bytes for 32-, 64-, and 128-bit data.

● Find all other active threads whose requested address lies in the same segment,

and reduce the transaction size if possible:

― If the transaction is 128 bytes and only the lower or upper half is used, reduce

the transaction size to 64 bytes.

― If the transaction is 64 bytes and only the lower or upper half is used, reduce the

transaction size to 32 bytes.

● Carry out the transaction and mark the serviced threads as inactive.

● Repeat until all threads in the half warp are serviced.

● On devices of compute capability 2.x, memory accesses by the threads of a warp

are coalesced into the minimum number of L1-cache-line-sized aligned

transactions necessary to satisfy all threads; see Section F.4.2 of the CUDA C

Programming Guide.

These concepts are illustrated in the following simple examples.

3.2.1.1 A Simple Access Pattern

The first and simplest case of coalescing can be achieved by any CUDA-enabled device:

the k-th thread accesses the k-th word in a segment. Note that not all threads need to

participate. (See Figure 3.4. Note that this figure assumes a device of compute capability

1.x, but that the figure would be much the same except twice as wide for devices of

compute capability 2.x.)

Figure 3.4 Coalesced Access–All Threads but One Access the
Corresponding Word in a Segment

This access pattern results in a single 64-byte transaction, indicated by the red rectangle.

Note that even though one word is not requested, all data in the segment are fetched. If

accesses by threads were permuted within this segment, still one 64-byte transaction

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 27

would be performed by a device with compute capability 1.2 or higher, but 16 serialized

transactions would be performed by a device with compute capability 1.1 or lower.

3.2.1.2 A Sequential but Misaligned Access Pattern

If sequential threads in a half warp access memory that is sequential but not aligned

with the segments, then a separate transaction results for each element requested on a

device with compute capability 1.1 or lower. On a device with compute capability 1.2 or

higher, several different scenarios can arise depending on whether all addresses for a

half warp fall within a single 128-byte segment. If the addresses fall within a 128-byte

segment, then a single 128-byte transaction is performed, as shown in Figure 3.5. Again,

this figure assumes a device of compute capability 1.x.

Figure 3.5 Unaligned Sequential Addresses that Fit within a Single 128-
Byte Segment

If a half warp accesses memory that is sequential but split across two 128-byte segments,

then two transactions are performed. In the following case, illustrated in Figure 3.6, one

64-byte transaction and one 32-byte transaction result. Again, this figure assumes a

device of compute capability 1.x.

Figure 3.6 Misaligned Sequential Addresses that Fall within Two 128-
Byte Segments

Memory allocated through the Runtime API, such as via cudaMalloc(), is guaranteed to

be aligned to at least 256 bytes. Therefore, choosing sensible thread block sizes, such as

multiples of 16, facilitates memory accesses by half warps that are aligned to segments.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 28

In addition, the qualifiers __align__(8) and __align__(16) can be used when defining

structures to ensure alignment to segments.

3.2.1.3 Effects of Misaligned Accesses

It is easy and informative to explore the ramifications of misaligned accesses using a

simple copy kernel, such as the one in Listing 3.5.

__global__ void offsetCopy(float *odata, float* idata, int offset)

{

 int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;

 odata[xid] = idata[xid];

}

Listing 3.5 A copy kernel that illustrates misaligned accesses

In Listing 3.5, data is copied from the input array idata to the output array, both of

which exist in global memory. The kernel is executed within a loop in host code that

varies the parameter offset from 1 to 32. (Figure 3.5 and Figure 3.6 correspond to offsets

of 1 and 17, respectively.) The effective bandwidth for the copy with various offsets on

an NVIDIA GeForce GTX 280 (with compute capability 1.3) and an NVIDIA GeForce

GTX 8800 (compute capability 1.0) are shown in Figure 3.7.

Figure 3.7 Performance of offsetCopy kernel

For the NVIDIA GeForce GTX 8800 device, global memory accesses with no offset or

with offsets that are multiples of 16 result in a single transaction per half warp and an

effective bandwidth of approximately 74 GBps. Otherwise, 16 transactions are issued per

half warp resulting in an effective bandwidth of approximately 7 GBps. This roughly 8x

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 29

performance degradation is due to the fact that 32 bytes, the minimum transaction size,

are fetched for each thread. However, only 4 bytes of data are used for each 32 bytes

fetched—resulting in the 4/32=1/8 performance relative to the fully coalesced case. The

two numbers also reflect the different data represented by effective bandwidth (4 bytes)

versus actual bandwidth (32 bytes).

Because of this possible performance degradation, memory coalescing is the most critical

aspect of performance optimization of device memory. For devices of compute

capability 1.2 and 1.3, the situation is less dire for misaligned accesses because, in all

cases, access by a half warp of threads in this kernel results in either one or two

transactions.

On the NVIDIA GeForce GTX 280 device, this results in an effective bandwidth of

between 120 GBps for a single transaction and 70 GBps for two transactions per half

warp. The number of transactions issued for a half warp of threads depends on the

offset and whether the warp is even- or odd-numbered. For offsets of 0 or 16, each half

warp results in a single 64-byte transaction (Figure 3.4). For offsets of 1 through 7 or 9

through 15, even-numbered warps result in a single 128-byte transaction (Figure 3.5)

and odd-numbered warps result in two transactions: one 64-byte and one 32-byte

(Figure 3.6). For offsets of 8, even-numbered warps result in one 128-byte transaction

and odd-numbered warps result in two 32-byte transactions. The two 32-byte

transactions, rather than a 64- and a 32-byte transaction, are responsible for the blip at

the offset of 8 in Figure 3.7.

3.2.1.4 Strided Accesses

Although the relaxed coalescing restrictions for devices with compute capability 1.2 or

higher achieve one-half full bandwidth for the offset copy case just described,

performance on such devices can degrade when successive threads access memory

locations that have non-unit strides. This pattern occurs frequently when dealing with

multidimensional data or matrices; for example, when a half warp of threads accesses

matrix elements column-wise and the matrix is stored in row-major order.

To illustrate the effect of strided access on effective bandwidth, see the following kernel

strideCopy(), which copies data with a stride of stride elements between threads from

idata to odata.

__global__ void strideCopy(float *odata, float* idata, int stride)

{

 int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;

 odata[xid] = idata[xid];

}

Listing 3.6 A kernel to illustrate non-unit stride data copy

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 30

Figure 3.8 illustrates a situation that can be created using the code in Listing 3.6; namely,

threads within a half warp access memory with a stride of 2. This action is coalesced into

a single 128-byte transaction on an NVIDIA GeForce GTX 280 (compute capability 1.3).

Figure 3.8 A half warp accessing memory with a stride of 2

Although a stride of 2 results in a single transaction, note that half the elements in the

transaction are not used and represent wasted bandwidth. As the stride increases, the

effective bandwidth decreases until the point where 16 transactions are issued for the 16

threads in a half warp, as indicated in Figure 3.9.

Figure 3.9 Performance of strideCopy Kernel

Note, however, that on the NVIDIA GTX 8800 device (compute capability 1.0), any non-

unit stride results in 16 separate transactions per half warp.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 31

As illustrated in Figure 3.9, non-unit stride global memory accesses should be avoided

whenever possible. One method for doing so utilizes shared memory, which is

discussed in the next section.

3.2.2 Shared Memory

Because it is on-chip, shared memory is much faster than local and global memory. In

fact, uncached shared memory latency is roughly 100x lower than global memory

latency—provided there are no bank conflicts between the threads, as detailed in the

following section.

3.2.2.1 Shared Memory and Memory Banks

To achieve high memory bandwidth for concurrent accesses, shared memory is divided

into equally sized memory modules (banks) that can be accessed simultaneously.

Therefore, any memory load or store of n addresses that spans n distinct memory banks

can be serviced simultaneously, yielding an effective bandwidth that is n times as high

as the bandwidth of a single bank.

However, if multiple addresses of a memory request map to the same memory bank, the

accesses are serialized. The hardware splits a memory request that has bank conflicts

into as many separate conflict-free requests as necessary, decreasing the effective

bandwidth by a factor equal to the number of separate memory requests. The one

exception here is when all threads in a half warp address the same shared memory

location, resulting in a broadcast. Devices of compute capability 2.x have the additional

ability to multicast shared memory accesses (i.e., to send copies of the same value to

several but not all threads of the warp).

To minimize bank conflicts, it is important to understand how memory addresses map

to memory banks and how to optimally schedule memory requests.

Medium Priority: Accesses to shared memory should be designed to avoid
serializing requests due to bank conflicts.

Shared memory banks are organized such that successive 32-bit words are assigned to

successive banks and each bank has a bandwidth of 32 bits per clock cycle. The

bandwidth of shared memory is 32 bits per bank per clock cycle.

For devices of compute capability 1.x, the warp size is 32 threads and the number of

banks is 16. A shared memory request for a warp is split into one request for the first

half of the warp and one request for the second half of the warp. Note that no bank

conflict occurs if only one memory location per bank is accessed by a half warp of

threads.

For devices of compute capability 2.x, the warp size is 32 threads and the number of

banks is also 32. A shared memory request for a warp is not split as with devices of

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 32

compute capability 1.x, meaning that bank conflicts can occur between threads in the

first half of a warp and threads in the second half of the same warp (see Section F.4.3 of

the CUDA C Programming Guide).

Refer to the CUDA C Programming Guide for more information on how accesses and

banks can be matched to avoid conflicts.

3.2.2.2 Shared Memory in Matrix Multiplication (C = AB)

Shared memory enables cooperation between threads in a block. When multiple threads

in a block use the same data from global memory, shared memory can be used to access

the data from global memory only once. Shared memory can also be used to avoid

uncoalesced memory accesses by loading and storing data in a coalesced pattern from

global memory and then reordering it in shared memory. Aside from memory bank

conflicts, there is no penalty for non-sequential or unaligned accesses by a half warp in

shared memory.

The use of shared memory is illustrated via the simple example of a matrix

multiplication C = AB for the case with A of dimension M×16, B of dimension 16×N, and

C of dimension M×N. To keep the kernels simple, M and N are multiples of 16. A

natural decomposition of the problem is to use a block and tile size of 16×16 threads.

Therefore, in terms of 16×16 tiles, A is a column matrix, B is a row matrix, and C is their

outer product. (See Figure 3.10) A grid of N/16 by M/16 blocks is launched, where each

thread block calculates the elements of a different tile in C from a single tile of A and a

single tile of B.

Note that the example discussed throughout this section assumes compute capability

1.x; the example would be much the same for compute capability 2.x, except that it

would have a width of 32 instead of 16.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 33

Figure 3.10 Block-Column Matrix (A) Multiplied by Block-Row Matrix (B)
with Resulting Product Matrix (C)

To do this, the simpleMultiply kernel (Listing 3.7) calculates the output elements of a tile

of matrix C.

__global__ void simpleMultiply(float *a, float* b, float *c,

 int N)

{

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;

 for (int i = 0; i < TILE_DIM; i++) {

 sum += a[row*TILE_DIM+i] * b[i*N+col];

 }

 c[row*N+col] = sum;

}

Listing 3.7 Unoptimized matrix multiplication

In Listing 3.7, a, b, and c are pointers to global memory for the matrices A, B, and C,

respectively; blockDim.x, blockDim.y, and TILE_DIM are all 16. Each thread in the 16×16

block calculates one element in a tile of C. row and col are the row and column of the

element in C being calculated by a particular thread. The for loop over i multiplies a

row of A by a column of B, which is then written to C.

The effective bandwidth of this kernel is only 8.7 GBps on an NVIDIA GeForce GTX 280

and 0.7 GBps on an NVIDIA GeForce GTX 8800. To analyze performance, it is necessary

to consider how half warps of threads access global memory in the for loop. Each half

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 34

warp of threads calculates one row of a tile of C, which depends on a single row of A

and an entire tile of B as illustrated in Figure 3.11.

Figure 3.11 Computing a Row (Half Warp) of a Tile In C Using One Row of
A and an Entire Tile of B

For each iteration i of the for loop, all threads in a half warp read the same value from

global memory (the index row*TILE_DIM+i is constant within a half warp), resulting in

16 transactions for compute capability 1.1 or lower, and 1 transaction for compute

capability 1.2 or higher. Even though the operation requires only 1 transaction for

compute capability 1.2 or higher, there is wasted bandwidth in the transaction because

only 4 bytes out of a 32-byte transaction are used. For each iteration, the 16 threads in a

half warp read a row of the B tile, which is a sequential and coalesced access for all

compute capabilities.

The performance on a device of any compute capability can be improved by reading a

tile of A into shared memory as shown in Listing 3.8.

__global__ void coalescedMultiply(float *a, float* b, float *c,

 int N)

{

 __shared__ float aTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;

 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 35

 for (int i = 0; i < TILE_DIM; i++) {

 sum += aTile[threadIdx.y][i]* b[i*N+col];

 }

 c[row*N+col] = sum;

}

Listing 3.8 Using shared memory to improve the global memory load
efficiency in matrix multiplication

In Listing 3.8, each element in a tile of A is read from global memory only once, in a fully

coalesced fashion (with no wasted bandwidth), to shared memory. Within each iteration

of the for loop, a value in shared memory is broadcast to all threads in a half warp.

In Listing 3.8, a __syncthreads()synchronization barrier call is not needed after reading

the tile of A into shared memory because only threads within the half warp that write

the data into shared memory read the data. This kernel has an effective bandwidth of

14.3 GBps on an NVIDIA GeForce GTX 280, and 8.2 GBps on an NVIDIA GeForce GTX

8800.

A further improvement can be made to how Listing 3.8 deals with matrix B. In

calculating a tile’s row of matrix C, the entire tile of B is read. The repeated reading of

the B tile can be eliminated by reading it into shared memory once (Listing 3.9).

__global__ void sharedABMultiply(float *a, float* b, float *c,

 int N)

{

 __shared__ float aTile[TILE_DIM][TILE_DIM],

 bTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;

 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

 bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];

 __syncthreads();

 for (int i = 0; i < TILE_DIM; i++) {

 sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];

 }

 c[row*N+col] = sum;

}

Listing 3.9 Improvement by reading additional data into shared memory

Note that in Listing 3.9, a __syncthreads() call is required after reading the B tile

because a warp reads data from shared memory that were written to shared memory by

different warps. The effective bandwidth of this routine is 29.7 GBps on an NVIDIA

GeForce GTX 280 and 15.7 GBps on an NVIDIA GeForce GTX 8800. Note that the

performance improvement is not due to improved coalescing in either case, but to

avoiding redundant transfers from global memory.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 36

The results of the various optimizations are summarized in Table 3.2.

Table 3.2 Performance Improvements Optimizing C = AB Matrix Multiply

Optimization NVIDIA GeForce

GTX 280

NVIDIA GeForce

GTX 8800

No optimization 8.7 GBps 0.7 GBps

Coalesced using shared

memory to store a tile of A
14.3 GBps 8.2 GBps

Using shared memory to

eliminate redundant reads

of a tile of B

29.7 GBps 15.7 GBps

Medium Priority: Use shared memory to avoid redundant transfers from global
memory.

3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT)

A variant of the previous matrix multiplication can be used to illustrate how strided

accesses to global memory, as well as shared memory bank conflicts, are handled. This

variant simply uses the transpose of A rather than B, or C = AAT.

As in the previous section, this example assumes compute capability 1.x; it would have a

width of 32 rather than 16 for compute capability 2.x.

A simple implementation for C = AAT is shown in Listing 3.10.

__global__ void simpleMultiply(float *a, float *c, int M)

{

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;

 for (int i = 0; i < TILE_DIM; i++) {

 sum += a[row*TILE_DIM+i] * a[col*TILE_DIM+i];

 }

 c[row*M+col] = sum;

}

Listing 3.10 Unoptimized handling of strided accesses to global memory

In Listing 3.10, the row-th, col-th element of C is obtained by taking the dot product of

the row-th and col-th rows of A. The effective bandwidth for this kernel is 1.1 GBps on

an NVIDIA GeForce GTX 280 and 0.5 GBps on an NVIDIA GeForce GTX 8800. These

results are substantially lower than the corresponding measurements for the C = AB

kernel. The difference is in how threads in a half warp access elements of A in the

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 37

second term, a[col*TILE_DIM+i], for each iteration i. For a half warp of threads, col

represents sequential columns of the transpose of A, and therefore col*TILE_DIM

represents a strided access of global memory with a stride of 16. This results in

uncoalesced memory accesses on devices with compute capability 1.1 or lower and

plenty of wasted bandwidth on devices with compute capability 1.2 or higher. The way

to avoid strided access is to use shared memory as before, except in this case a half warp

reads a row of A into a column of a shared memory tile, as shown in Listing 3.11.

__global__ void coalescedMultiply(float *a, float *c, int M)

{

 __shared__ float aTile[TILE_DIM][TILE_DIM],

 transposedTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;

 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

 transposedTile[threadIdx.x][threadIdx.y] =

 a[(blockIdx.x*blockDim.x + threadIdx.y)*TILE_DIM +

 threadIdx.x];

 __syncthreads();

 for (int i = 0; i < TILE_DIM; i++) {

 sum += aTile[threadIdx.y][i]* transposedTile[i][threadIdx.x];

 }

 c[row*M+col] = sum;

}

Listing 3.11 An optimized version of Listing 3.10 using coalesced reads
from global memory

Listing 3.11 uses the shared transposedTile to avoid uncoalesced accesses in the second

term in the dot product, and the shared aTile technique from the previous example to

avoid uncoalesced accesses in the first term. The effective bandwidth of this kernel is

24.9 GBps on an NVIDIA GeForce GTX 280 and 13.2 GBps on an NVIDIA GeForce GTX

8800. These results are slightly lower than those obtained by the final kernel for C = AB.

The cause of the difference is shared memory bank conflicts.

The reads of elements in transposedTile within the for loop are free of conflicts, because

threads of each half warp read across rows of the tile, resulting in unit stride across the

banks. However, bank conflicts occur when copying the tile from global memory into

shared memory. To enable the loads from global memory to be coalesced, data are read

from global memory sequentially. However, this requires writing to shared memory in

columns, and because of the use of 16×16 tiles in shared memory, this results in a stride

between threads of 16 banks. These 16-way bank conflicts are very expensive. The

simple remedy is to pad the shared memory array so that it has an extra column, as in

the following line of code.

 __shared__ float transposedTile[TILE_DIM][TILE_DIM+1];

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 38

This padding eliminates the conflicts entirely, because now the stride between threads is

17 banks (33 banks for compute capability 2.x), which, due to modular arithmetic used

to compute bank indices, is equivalent to a unit stride. After this change, the effective

bandwidth is 30.4 GBps on an NVIDIA GeForce GTX 280 and 15.6 GBps on an NVIDIA

GeForce GTX 8800, which is comparable to the results from the last C = AB kernel.

The results of these optimizations are summarized in Table 3.3.

Table 3.3 Performance Improvements Optimizing C = AAT Matrix
Multiplication

Optimization NVIDIA GeForce

GTX 280

NVIDIA GeForce

GTX 8800

No optimization 1.1 GBps 0.5 GBps

Using shared memory to

coalesce global reads
24.9 GBps 13.2 GBps

Removing bank conflicts 30.4 GBps 15.6 GBps

These results should be compared with those in Table 3.2. As can be seen from these

tables, judicious use of shared memory can dramatically improve performance.

The examples in this section have illustrated three reasons to use shared memory:

 To enable coalesced accesses to global memory, especially to avoid large strides (for

general matrices, strides are much larger than 16)

 To eliminate (or reduce) redundant loads from global memory

 To avoid wasted bandwidth

3.2.2.4 Shared Memory Use by Kernel Arguments

Shared memory holds the parameters or arguments that are passed to kernels at launch.

In kernels with long argument lists, it can be valuable to put some arguments into

constant memory (and reference them there) rather than consume shared memory.

 Low Priority: For kernels with long argument lists, place some arguments into
constant memory to save shared memory.

3.2.3 Local Memory

Local memory is so named because its scope is local to the thread, not because of its

physical location. In fact, local memory is off-chip. Hence, access to local memory is as

expensive as access to global memory. Like global memory, local memory is not cached

on devices of compute capability 1.x. In other words, the term “local” in the name does

not imply faster access.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 39

Local memory is used only to hold automatic variables. This is done by the nvcc

compiler when it determines that there is insufficient register space to hold the variable.

Automatic variables that are likely to be placed in local memory are large structures or

arrays that would consume too much register space and arrays that the compiler

determines may be indexed dynamically.

Inspection of the PTX assembly code (obtained by compiling with -ptx or -keep

command-line options to nvcc) reveals whether a variable has been placed in local

memory during the first compilation phases. If it has, it will be declared using the .local

mnemonic and accessed using the ld.local and st.local mnemonics. If it has not,

subsequent compilation phases might still decide otherwise, if they find the variable

consumes too much register space for the targeted architecture. There is no way to check

this for a specific variable, but the compiler reports total local memory usage per kernel

(lmem) when run with the --ptxas-options=-v option.

3.2.4 Texture Memory

The read-only texture memory space is cached. Therefore, a texture fetch costs one

device memory read only on a cache miss; otherwise, it just costs one read from the

texture cache. The texture cache is optimized for 2D spatial locality, so threads of the

same warp that read texture addresses that are close together will achieve best

performance. Texture memory is also designed for streaming fetches with a constant

latency; that is, a cache hit reduces DRAM bandwidth demand, but not fetch latency.

In certain addressing situations, reading device memory through texture fetching can be

an advantageous alternative to reading device memory from global or constant memory.

3.2.4.1 Textured Fetch vs. Global Memory Read

Device memory reads through texture fetching present several potential benefits over

reads from global memory:

 They are cached, unlike global memory reads in devices of compute capability 1.x.

This results in potentially higher achieved bandwidth if there is 2D locality in the

texture fetches and can be used to avoid uncoalesced loads from global memory.

(Note that the L1 cache in devices of compute capability 2.x has a higher bandwidth

than the texture cache, potentially obviating this benefit in these devices, depending

on access pattern.)

 Packed data can be unpacked into separate variables in a single operation.

 8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-

point values in the range [0.0, 1.0] or [-1.0, 1.0].

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 40

Listings 3.12 and 3.13 illustrate how textures can be used to avoid uncoalesced global

memory accesses in the following variation of the offsetCopy kernel. This copy performs

a shift in data, as demonstrated in the following kernel.

__global__ void shiftCopy(float *odata, float *idata, int shift)

{

 int xid = blockIdx.x * blockDim.x + threadIdx.x;

 odata[xid] = idata[xid+shift];

}

Listing 3.12 Unoptimized data shifts

This copy kernel applies a shift to the global memory location when reading from idata,

but writes to unshifted global memory locations in odata. The amount of shift is

specified as a function argument to the kernel. Some degradation of performance occurs

when the shift is neither zero nor a multiple of 16 because reading from idata will be

either uncoalesced (compute capability 1.1 or lower) or result in transactions with

wasted bandwidth (compute capability 1.2 or higher). Note that regardless of compute

capability, writing to odata is fully coalesced.

The version of this code that uses textures to perform the shifted read is shown in

Listing 3.13.

__global__ void textureShiftCopy(float *odata, float *idata,

 int shift)

{

 int xid = blockIdx.x * blockDim.x + threadIdx.x;

 odata[xid] = tex1Dfetch(texRef, xid+shift);

}

Listing 3.13 Data shifts optimized by use of texture memory

Here, the texture reference texRef is bound to the idata array in the host code and the

function tex1Dfetch() reads the shifted memory locations of idata via a texture fetch.

The results of both kernels (using global memory and textures for loads) on an NVIDIA

GeForce GTX 280 and an NVIDIA GeForce GTX 8800 are given in Figure 3.12.

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 41

Figure 3.12 Results of Using Texture Memory to Avoid Uncoalesced
Global Memory Access

The benefit of using textures for cases that are not optimally coalesced is clear. Textured

reads can maintain effective bandwidth of the unshifted, fully coalesced cases within a

few percent. Note that shifts that are neither zero nor multiples of 16 show greater

effective bandwidth than the offsetCopy kernel in Figure 3.7. Because all the stores in the

shift kernels are fully coalesced with no wasted bandwidth, the shift applies only to the

loads.

3.2.4.2 Additional Texture Capabilities

If textures are fetched using tex1D(), tex2D(), or tex3D() rather than tex1Dfetch(), the

hardware provides other capabilities that might be useful for some applications, such as

image processing. (See Table 3.4.)

Table 3.4 Useful Features for tex1D(), tex2D(), and tex3D() Fetches

Feature Use Caveat

Filtering Fast, low-precision interpolation

between texels

Valid only if the texture

reference returns floating-point

data

Normalized texture

coordinates

Resolution-independent coding

Addressing modes Automatic handling of boundary

cases¹

Can be used only with normalized

texture coordinates

¹The automatic handling of boundary cases in the bottom row of Table 3.4 refers to how a texture coordinate is resolved

when it falls outside the valid addressing range. There are two options: clamp and wrap. If x is the coordinate and N is the

number of texels for a one-dimensional texture, then with clamp, x is replaced by 0 if x < 0 and by 1-1/N if 1 ≤x. With wrap,

x is replaced by frac(x) where frac(x) = x – floor(x). Floor returns the largest integer less than or equal to x. So, in clamp

mode where N = 1, an x of 1.3 is clamped to 1.0; whereas in wrap mode, it is converted to 0.3

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 42

Within a kernel call, the texture cache is not kept coherent with respect to global

memory writes, so texture fetches from addresses that have been written via global

stores in the same kernel call return undefined data. That is, a thread can safely read a

memory location via texture if the location has been updated by a previous kernel call or

memory copy, but not if it has been previously updated by the same thread or another

thread within the same kernel call. This is relevant only when fetching from linear or

pitch-linear memory because a kernel cannot write to CUDA arrays.

3.2.4.3 Texture Format Recommendation

For 8-bit texture formats when using OpenGL interoperability, note that interoperating

with GL_RGBA8 textures on devices of compute capability 1.0, 1.1, or 1.3 runs at

reduced performance.

3.2.5 Constant Memory

There is a total of 64 KB constant memory on a device. The constant memory space is

cached. As a result, a read from constant memory costs one memory read from device

memory only on a cache miss; otherwise, it just costs one read from the constant cache.

For all threads of a half warp, reading from the constant cache is as fast as reading from

a register as long as all threads read the same address. Accesses to different addresses by

threads within a half warp are serialized, so cost scales linearly with the number of

different addresses read by all threads within a half warp.

Alternatively, on devices of compute capability 2.x, programs use the LoaD Uniform

(LDU) operation; see Section F.4.4 of the CUDA C Programming Guide for details.

3.2.6 Registers

Generally, accessing a register consumes zero extra clock cycles per instruction, but

delays may occur due to register read-after-write dependencies and register memory

bank conflicts.

The latency of read-after-write dependencies is approximately 24 cycles, but this latency

is completely hidden on multiprocessors that have at least 192 active threads (that is, 6

warps) for devices of compute capability 1.x (8 CUDA cores per multiprocessor * 24

cycles of latency = 192 active threads to cover that latency). For devices of compute

capability 2.0, which have 32 CUDA cores per multiprocessor, as many as 768 threads

might be required to completely hide latency.

The compiler and hardware thread scheduler will schedule instructions as optimally as

possible to avoid register memory bank conflicts. They achieve the best results when the

number of threads per block is a multiple of 64. Other than following this rule, an

Memory Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 43

application has no direct control over these bank conflicts. In particular, there is no

register-related reason to pack data into float4 or int4 types.

3.2.6.1 Register Pressure

Register pressure occurs when there are not enough registers available for a given task.

Even though each multiprocessor contains thousands of 32-bit registers (see Section F.1

of the CUDA C Programming Guide), these are partitioned among concurrent threads. To

prevent the compiler from allocating too many registers, use the –maxrregcount=N

compiler command-line option (see Section B.1 below) or the launch bounds kernel

definition qualifier (see Section B.17 of the CUDA C Programming Guide) to control the

maximum number of registers to allocated per thread.

3.3 ALLOCATION

Device memory allocation and de-allocation via cudaMalloc() and cudaFree() (or their

Driver API equivalents) are expensive operations, so device memory should be reused

and/or sub-allocated by the application wherever possible to minimize the impact of

allocations on overall performance.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 44

Chapter 4.
EXECUTION CONFIGURATION
OPTIMIZATIONS

One of the keys to good performance is to keep the multiprocessors on the device as

busy as possible. A device in which work is poorly balanced across the multiprocessors

will deliver suboptimal performance. Hence, it’s important to design your application to

use threads and blocks in a way that maximizes hardware utilization and to limit

practices that impede the free distribution of work. A key concept in this effort is

occupancy, which is explained in the following sections.

Another important concept is the management of system resources allocated for a

particular task. How to manage this resource utilization is discussed in the final sections

of this chapter.

4.1 OCCUPANCY

Thread instructions are executed sequentially in CUDA, and, as a result, executing other

warps when one warp is paused or stalled is the only way to hide latencies and keep the

hardware busy. Some metric related to the number of active warps on a multiprocessor

is therefore important in determining how effectively the hardware is kept busy. This

metric is occupancy.

Occupancy is the ratio of the number of active warps per multiprocessor to the

maximum number of possible active warps. (To determine the latter number, see the

deviceQuery code sample in the GPU Computing SDK or refer to Appendix F in the

CUDA C Programming Guide.) Another way to view occupancy is the percentage of the

hardware’s ability to process warps that is actively in use.

Execution Configuration Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 45

Higher occupancy does not always equate to higher performance—there is a point

above which additional occupancy does not improve performance. However, low

occupancy always interferes with the ability to hide memory latency, resulting in

performance degradation.

4.2 CALCULATING OCCUPANCY

One of several factors that determine occupancy is register availability. Register storage

enables threads to keep local variables nearby for low-latency access. However, the set

of registers (known as the register file) is a limited commodity that all threads resident on

a multiprocessor must share. Registers are allocated to an entire block all at once. So, if

each thread block uses many registers, the number of thread blocks that can be resident

on a multiprocessor is reduced, thereby lowering the occupancy of the multiprocessor.

The maximum number of registers per thread can be set manually at compilation time

per-file using the –maxrregcount option or per-kernel using the __launch_bounds__

qualifier (see Section 3.2.6.1).

For purposes of calculating occupancy, the number of registers used by each thread is

one of the key factors. For example, devices with compute capability 1.0 and 1.1 have

8,192 32-bit registers per multiprocessor and can have a maximum of 768 simultaneous

threads resident (24 warps x 32 threads per warp). This means that in one of these

devices, for a multiprocessor to have 100% occupancy, each thread can use at most 10

registers. However, this approach of determining how register count affects occupancy

does not take into account the register allocation granularity. For example, on a device of

compute capability 1.0, a kernel with 128-thread blocks using 12 registers per thread

results in an occupancy of 83% with 5 active 128-thread blocks per multiprocessor,

whereas a kernel with 256-thread blocks using the same 12 registers per thread results in

an occupancy of 66% because only two 256-thread blocks can reside on a multiprocessor.

Furthermore, register allocations are rounded up to the nearest 256 registers per block

on devices with compute capability 1.0 and 1.1.

The number of registers available, the maximum number of simultaneous threads

resident on each multiprocessor, and the register allocation granularity vary over

different compute capabilities. Because of these nuances in register allocation and the

fact that a multiprocessor’s shared memory is also partitioned between resident thread

blocks, the exact relationship between register usage and occupancy can be difficult to

determine. The --ptxas-options=-v option of nvcc details the number of registers used

per thread for each kernel. See Section 4.2 of the CUDA C Programming Guide for the

register allocation formulas for devices of various compute capabilities and Section F.1

of the programming guide for the total number of registers available on those devices.

Alternatively, NVIDIA provides an occupancy calculator in the form of an Excel

spreadsheet that enables developers to hone in on the optimal balance and to test

different possible scenarios more easily. This spreadsheet, shown in CUDA GPU

Execution Configuration Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 46

Occupancy Calculator Usage to Project Occupancy, is called

CUDA_Occupancy_calculator.xls and is located in the tools directory of the CUDA SDK.

Figure 4.1 CUDA GPU Occupancy Calculator Usage to Project Occupancy

In addition to the calculator spreadsheet, occupancy can be determined using the CUDA

profiler.

4.3 HIDING REGISTER DEPENDENCIES

Medium Priority: To hide latency arising from register dependencies, maintain
sufficient numbers of active threads per multiprocessor (i.e., sufficient
occupancy).

Register dependencies arise when an instruction uses a result stored in a register written

by an instruction before it. The latency on current CUDA-enabled GPUs is

approximately 24 cycles, so threads must wait 24 cycles before using an arithmetic

result. However, this latency can be completely hidden by the execution of threads in

other warps. See Section 3.2.6 for details.

Execution Configuration Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 47

4.4 THREAD AND BLOCK HEURISTICS

Medium Priority: The number of threads per block should be a multiple of 32
threads, because this provides optimal computing efficiency and facilitates
coalescing.

The dimension and size of blocks per grid and the dimension and size of threads per

block are both important factors. The multidimensional aspect of these parameters

allows easier mapping of multidimensional problems to CUDA and does not play a role

in performance. As a result, this section discusses size but not dimension.

Latency hiding and occupancy depend on the number of active warps per

multiprocessor, which is implicitly determined by the execution parameters along with

resource (register and shared memory) constraints. Choosing execution parameters is a

matter of striking a balance between latency hiding (occupancy) and resource

utilization.

Choosing the execution configuration parameters should be done in tandem; however,

there are certain heuristics that apply to each parameter individually. When choosing

the first execution configuration parameter—the number of blocks per grid, or grid size—

the primary concern is keeping the entire GPU busy. The number of blocks in a grid

should be larger than the number of multiprocessors so that all multiprocessors have at

least one block to execute. Furthermore, there should be multiple active blocks per

multiprocessor so that blocks that aren’t waiting for a __syncthreads() can keep the

hardware busy. This recommendation is subject to resource availability; therefore, it

should be determined in the context of the second execution parameter—the number of

threads per block, or block size—as well as shared memory usage. To scale to future

devices, the number of blocks per kernel launch should be in the thousands.

When choosing the block size, it is important to remember that multiple concurrent

blocks can reside on a multiprocessor, so occupancy is not determined by block size

alone. In particular, a larger block size does not imply a higher occupancy. For example,

on a device of compute capability 1.1 or lower, a kernel with a maximum block size of

512 threads results in an occupancy of 66 percent because the maximum number of

threads per multiprocessor on such a device is 768. Hence, only a single block can be

active per multiprocessor. However, a kernel with 256 threads per block on such a

device can result in 100 percent occupancy with three resident active blocks.

As mentioned in Section 4.1, higher occupancy does not always equate to better

performance. For example, improving occupancy from 66 percent to 100 percent

generally does not translate to a similar increase in performance. A lower occupancy

kernel will have more registers available per thread than a higher occupancy kernel,

which may result in less register spilling to local memory. Typically, once an occupancy

Execution Configuration Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 48

of 50 percent has been reached, additional increases in occupancy do not translate into

improved performance.

There are many such factors involved in selecting block size, and inevitably some

experimentation is required. However, a few rules of thumb should be followed:

 Threads per block should be a multiple of warp size to avoid wasting computation on

under-populated warps and to facilitate coalescing.

 A minimum of 64 threads per block should be used, but only if there are multiple

concurrent blocks per multiprocessor.

 Between 128 and 256 threads per block is a better choice and a good initial range for

experimentation with different block sizes.

 Use several (3 to 4) smaller thread blocks rather than one large thread block per

multiprocessor if latency affects performance. This is particularly beneficial to kernels

that frequently call __syncthreads().

Note that when a thread block allocates more registers than are available on a

multiprocessor, the kernel launch fails, as it will when too much shared memory or too

many threads are requested.

4.5 EFFECTS OF SHARED MEMORY

Shared memory can be helpful in several situations, such as helping to coalesce or

eliminate redundant access to global memory. However, it also can act as a constraint on

occupancy. In many cases, the amount of shared memory required by a kernel is related

to the block size that was chosen, but the mapping of threads to shared memory

elements does not need to be one-to-one. For example, it may be desirable to use a 32×32

element shared memory array in a kernel, but because the maximum number of threads

per block is 512, it is not possible to launch a kernel with 32×32 threads per block. In

such cases, kernels with 32×16 or 32×8 threads can be launched with each thread

processing two or four elements, respectively, of the shared memory array. The

approach of using a single thread to process multiple elements of a shared memory

array can be beneficial even if limits such as threads per block are not an issue. This is

because some operations common to each element can be performed by the thread once,

amortizing the cost over the number of shared memory elements processed by the

thread.

A useful technique to determine the sensitivity of performance to occupancy is through

experimentation with the amount of dynamically allocated shared memory, as specified

in the third parameter of the execution configuration. By simply increasing this

parameter (without modifying the kernel), it is possible to effectively reduce the

occupancy of the kernel and measure its effect on performance.

Execution Configuration Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 49

As mentioned in the previous section, once an occupancy of more than 50 percent has

been reached, it generally does not pay to optimize parameters to obtain higher

occupancy ratios. The previous technique can be used to determine whether such a

plateau has been reached.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 50

Chapter 5.
INSTRUCTION OPTIMIZATIONS

Awareness of how instructions are executed often permits low-level optimizations that

can be useful, especially in code that is run frequently (the so-called hot spot in a

program). Best practices suggest that this optimization be performed after all higher-

level optimizations have been completed.

5.1 ARITHMETIC INSTRUCTIONS

Single-precision floats provide the best performance, and their use is highly encouraged.

The throughput of individual arithmetic operations on devices of compute capability 1.x

is detailed in Section F.3 of the CUDA C Programming Guide, and the throughput of

these operations on devices of compute capability 2.x is detailed in Section F.4 of the

programming guide.

5.1.1 Division and Modulo Operations

 Low Priority: Use shift operations to avoid expensive division and modulo
calculations.

Integer division and modulo operations are particularly costly and should be avoided or

replaced with bitwise operations whenever possible: If n is a power of 2, (i/n) is

equivalent to (i ≫ log2(n)) and (i % n) is equivalent to (i & (n-1)).

The compiler will perform these conversions if n is literal. (For further information, refer

to Chapter 5 of the CUDA C Programming Guide).

Instruction Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 51

5.1.2 Reciprocal Square Root

The reciprocal square root should always be invoked explicitly as rsqrtf() for single

precision and rsqrt() for double precision. The compiler optimizes 1.0f/sqrtf(x) into

rsqrtf() only when this does not violate IEEE-754 semantics.

5.1.3 Other Arithmetic Instructions

 Low Priority: Avoid automatic conversion of doubles to floats.

The compiler must on occasion insert conversion instructions, introducing additional

execution cycles. This is the case for

 Functions operating on char or short whose operands generally need to be converted

to an int

 Double-precision floating-point constants (defined without any type suffix) used as

input to single-precision floating-point computations

The latter case can be avoided by using single-precision floating-point constants, defined

with an f suffix such as 3.141592653589793f, 1.0f, 0.5f. This suffix has accuracy

implications in addition to its ramifications on performance. The effects on accuracy are

discussed in Chapter 7. Note that this distinction is particularly important to

performance on devices of compute capability 2.x.

For single-precision code, use of the float type and the single-precision math functions

are highly recommended. When compiling for devices without native double-precision

support such as devices of compute capability 1.2 and earlier, each double-precision

floating-point variable is converted to single-precision floating-point format (but retains

its size of 64 bits) and double-precision arithmetic is demoted to single-precision

arithmetic.

It should also be noted that the CUDA math library’s complementary error function,

erfcf(), is particularly fast with full single-precision accuracy.

5.1.4 Math Libraries

Medium Priority: Use the fast math library whenever speed trumps precision.

Two types of runtime math operations are supported. They can be distinguished by

their names: some have names with prepended underscores, whereas others do not (e.g.,

__functionName() versus functionName()). Functions following the __functionName()

naming convention map directly to the hardware level. They are faster but provide

Instruction Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 52

somewhat lower accuracy (e.g., __sinf(x) and __expf(x)). Functions following

functionName() naming convention are slower but have higher accuracy (e.g., sinf(x)

and expf(x)). The throughput of __sinf(x), __cosf(x), and __expf(x) is much greather

than that of sinf(x), cosf(x), tanf(x). The latter become even more expensive (about

an order of magnitude slower) if the magnitude of the argument x needs to be reduced.

Moreover, in such cases, the argument-reduction code uses local memory, which can

affect performance even more because of the high latency of local memory. More details

are available in the CUDA C Programming Guide.

Note also that whenever sine and cosine of the same argument are computed, the

sincos… family of instructions should be used to optimize performance:

 sincosf() for single-precision fast math (see next paragraph)

 sincosf() for regular single-precision

 sincos() for double precision

The –use_fast_math compiler option of nvcc coerces every functionName() call to the

equivalent __functionName() call. This switch should be used whenever accuracy is a

lesser priority than the performance. This is frequently the case with transcendental

functions. Note this switch is effective only on single-precision floating point.

Medium Priority: Prefer faster, more specialized math functions over slower, more
general ones when possible.

For small integer powers (e.g., x2 or x3), explicit multiplication is almost certainly faster

than the use of general exponentiation routines such as pow(). While compiler

optimization improvements continually seek to narrow this gap, explicit multiplication

(or the use of an equivalent purpose-built inline function or macro) can have a

significant advantage. This advantage is increased when several powers of the same

base are needed (e.g., where both x2 and x5 are calculated in close proximity), as this aids

the compiler in its common sub-expression elimination (CSE) optimization.

For exponentiation using base 2 or 10, use the functions exp2() or expf2() and exp10()

or expf10() rather than the functions pow() or powf(). Both pow() and powf() are heavy-

weight functions in terms of register pressure and instruction count due to the

numerous special cases arising in general exponentiation and the difficulty of achieving

good accuracy across the entire ranges of the base and the exponent. The functions

exp2(), exp2f(), exp10(), and exp10f(), on the other hand, are similar to exp() and

expf() in terms of performance, and can be as much as ten times faster than their

pow()/powf() equivalents.

For exponentiation with an exponent of 1/3, use the cbrt() or cbrtf() function rather

than the generic exponentiation functions pow() or powf(), as the former are significantly

faster than the latter. Likewise, for exponentation with an exponent of -1/3, use rcbrt()

or rcbrtf().

Instruction Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 53

Replace sin(π*<expr>) with sinpi(<expr>) and cos(π*<expr>) with cospi(<expr>). This

is advantageous with regard to both accuracy and performance. As a particular example,

to evaluate the sine function in degrees instead of radians, use sinpi(x/180.0).

Similarly, the single-precision functions sinpif() and cospif() should replace calls to

sinf() and cosf() when the function argument is of the form π*<expr>. (The

performance advantage sinpi() has over sin() is due to simplified argument reduction;

the accuracy advantage is because sinpi() multiplies by π only implicitly, effectively

using an infinitely precise mathematical π rather than a single- or double-precision

approximation thereof.)

Instruction Optimizations

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 54

5.2 MEMORY INSTRUCTIONS

High Priority: Minimize the use of global memory. Prefer shared memory access
where possible.

Memory instructions include any instruction that reads from or writes to shared, local,

or global memory. When accessing uncached local or global memory, there are 400 to

600 clock cycles of memory latency.

As an example, the assignment operator in the following sample code has a high

throughput, but, crucially, there is a latency of 400 to 600 clock cycles to read data from

global memory:

__shared__ float shared[32];

__device__ float device[32];

shared[threadIdx.x] = device[threadIdx.x];

Much of this global memory latency can be hidden by the thread scheduler if there are

sufficient independent arithmetic instructions that can be issued while waiting for the

global memory access to complete. However, it is best to avoid accessing global memory

whenever possible.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 55

Chapter 6.
CONTROL FLOW

6.1 BRANCHING AND DIVERGENCE

High Priority: Avoid different execution paths within the same warp.

Any flow control instruction (if, switch, do, for, while) can significantly affect the

instruction throughput by causing threads of the same warp to diverge; that is, to follow

different execution paths. If this happens, the different execution paths must be

serialized, increasing the total number of instructions executed for this warp. When all

the different execution paths have completed, the threads converge back to the same

execution path.

To obtain best performance in cases where the control flow depends on the thread ID,

the controlling condition should be written so as to minimize the number of divergent

warps.

This is possible because the distribution of the warps across the block is deterministic as

mentioned in Section 4.1 of the CUDA C Programming Guide. A trivial example is when

the controlling condition depends only on (threadIdx / WSIZE) where WSIZE is the warp

size.

In this case, no warp diverges because the controlling condition is perfectly aligned with

the warps.

Control Flow

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 56

6.2 BRANCH PREDICATION

 Low Priority: Make it easy for the compiler to use branch predication in lieu of
loops or control statements.

Sometimes, the compiler may unroll loops or optimize out if or switch statements by

using branch predication instead. In these cases, no warp can ever diverge. The

programmer can also control loop unrolling using

#pragma unroll

For more information on this pragma, refer to the CUDA C Programming Guide.

When using branch predication, none of the instructions whose execution depends on

the controlling condition is skipped. Instead, each such instruction is associated with a

per-thread condition code or predicate that is set to true or false according to the

controlling condition. Although each of these instructions is scheduled for execution,

only the instructions with a true predicate are actually executed. Instructions with a false

predicate do not write results, and they also do not evaluate addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the

number of instructions controlled by the branch condition is less than or equal to a

certain threshold: If the compiler determines that the condition is likely to produce

many divergent warps, this threshold is 7; otherwise it is 4.

6.3 LOOP COUNTERS SIGNED VS. UNSIGNED

Medium Priority: Use signed integers rather than unsigned integers as loop
counters.

In the C language standard, unsigned integer overflow semantics are well defined,

whereas signed integer overflow causes undefined results. Therefore, the compiler can

optimize more aggressively with signed arithmetic than it can with unsigned arithmetic.

This is of particular note with loop counters: since it is common for loop counters to

have values that are always positive, it may be tempting to declare the counters as

unsigned. For slightly better performance, however, they should instead be declared as

signed.

For example, consider the following code:

for (i = 0; i < n; i++) {

 out[i] = in[offset + stride*i];

}

Control Flow

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 57

Here, the sub-expression stride*i could overflow a 32-bit integer, so if i is declared as

unsigned, the overflow semantics prevent the compiler from using some optimizations

that might otherwise have applied, such as strength reduction. If instead i is declared as

signed, where the overflow semantics are undefined, the compiler has more leeway to

use these optimizations.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 58

Chapter 7.
GETTING THE RIGHT ANSWER

Obtaining the right answer is clearly the principal goal of all computation. On parallel

systems, it is possible to run into difficulties not typically found in traditional serial-

oriented programming. These include threading issues, unexpected values due to the

way floating-point values are computed, and challenges arising from differences in the

way CPU and GPU processors operate. This chapter examines issues that can affect the

correctness of returned data and points to appropriate solutions.

7.1 DEBUGGING

The CUDA debugger, CUDA-GDB, is a valuable debugging tool. It is a port of the GNU

Debugger version 6.6 and runs on 32-bit and 64-bit Linux. See the CUDA-GDB User

Manual for more details.

For Microsoft Windows Vista and 7, the NVIDIA Parallel Nsight debugging and

profiling tool is available as a free plugin for Microsoft Visual Studio. See

http://developer.nvidia.com/object/nsight.html for more details.

7.2 NUMERICAL ACCURACY AND PRECISION

Incorrect or unexpected results arise principally from issues of floating-point accuracy

due to the way floating-point values are computed and stored. The following sections

explain the principal items of interest. Other peculiarities of floating-point arithmetic are

presented in Section F.2 of the CUDA C Programming Guide.

http://developer.nvidia.com/object/nsight.html

Getting the Right Answer

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 59

7.2.1 Single vs. Double Precision

Devices of compute capability 1.3 and higher provide native support for double-

precision floating-point values (that is, values 64 bits wide). Results obtained using

double-precision arithmetic will frequently differ from the same operation performed

via single-precision arithmetic due to the greater precision of the former and due to

rounding issues. Therefore, it is important to be sure to compare like with like and to

express the results within a certain tolerance rather than expecting them to be exact.

Whenever doubles are used, use at least the –arch=sm_13 switch on the nvcc command

line; see Sections 3.1.3 and 3.1.4 of the CUDA C Programming Guide for more details.

7.2.2 Floating-Point Math Is Not Associative

Each floating-point arithmetic operation involves a certain amount of rounding.

Consequently, the order in which arithmetic operations are performed is important. If A,

B, and C are floating-point values, (A+B)+C is not guaranteed to equal A+(B+C) as it is in

symbolic math. When you parallelize computations, you potentially change the order of

operations and therefore the parallel results might not match sequential results. This

limitation is not specific to CUDA, but an inherent part of parallel computation on

floating-point values.

7.2.3 Promotions to Doubles and Truncations to Floats

When comparing the results of computations of float variables between the host and

device, make sure that promotions to double precision on the host do not account for

different numerical results. For example, if the code segment

float a;

…

a = a*1.02;

were performed on a device of compute capability 1.2 or less, or on a device with

compute capability 1.3 but compiled without enabling double precision (as mentioned

above), then the multiplication would be performed in single precision. However, if the

code were performed on the host, the literal 1.02 would be interpreted as a double-

precision quantity and a would be promoted to a double, the multiplication would be

performed in double precision, and the result would be truncated to a float—thereby

yielding a slightly different result. If, however, the literal 1.02 were replaced with 1.02f,

the result would be the same in all cases because no promotion to doubles would occur.

To ensure that computations use single-precision arithmetic, always use float literals.

In addition to accuracy, the conversion between doubles and floats (and vice versa) has

a detrimental effect on performance, as discussed in Chapter 5.

Getting the Right Answer

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 60

7.2.4 IEEE 754 Compliance

All CUDA compute devices follow the IEEE 754 standard for binary floating-point

representation, with some small exceptions. These exceptions, which are detailed in

Section F.2 of the CUDA C Programming Guide, can lead to results that differ from IEEE

754 values computed on the host system.

One of the key differences is the fused multiply-add (FMAD) instruction, which

combines multiply-add operations into a single instruction execution and truncates the

intermediate result of the multiplication. Its result will differ at times from results

obtained by doing the two operations separately.

7.2.5 x86 80-bit Computations

x86 processors can use an 80-bit “double extended precision” math when performing

floating-point calculations. The results of these calculations can frequently differ from

pure 64-bit operations performed on the CUDA device. To get a closer match between

values, set the x86 host processor to use regular double or single precision (64 bits and

32 bits, respectively). This is done with the FLDCW assembly instruction or the equivalent

operating system API.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 61

Chapter 8.
MULTI-GPU PROGRAMMING

8.1 INTRODUCTION TO MULTI-GPU

Programming a multi-GPU application is no different from programming an application

to utilize multiple cores or sockets because CUDA is completely orthogonal to CPU

thread management or message passing APIs. The only new concept is selecting the

correct GPU, which in most cases is an available GPU (one without an existing context).

In fact, GPU acceleration can be added straightforwardly to existing multi-threaded

CPU code, whether it uses lightweight or heavyweight threads – all one has to do is port

the compute-intensive portions of the code to GPU and add calls to transfer data

between CPU and GPU, leaving the inter-CPU-thread communication code unchanged.

8.2 MULTI-GPU PROGRAMMING

In order to issue work to a GPU, a context (view of a GPU) is established between a CPU

thread (or group of threads) and the GPU. The context contains all of the driver state

that refers to that GPU – the virtual address space, streams, events, allocated blocks of

memory, etc. Only one context can be active on a GPU at any particular instant;

similarly, a CPU thread can execute commands (perform memory allocations, launch

kernels, etc.) in only one context at any particular instant.

A context is established automatically by the CUDA Runtime during the program’s first

call to a function that changes state (such as cudaMalloc(), etc.), so one can force the

creation of a context by calling cudaFree(0). Note that a context is created on GPU 0 by

default, unless another GPU is selected explicitly prior to context creation with a

cudaSetDevice() call. The context is destroyed either by calling cudaDeviceReset()or

when the controlling CPU process exits.

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 62

In order to issue work to p GPUs concurrently, a program can either use p CPU threads,

each with its own context, or it can use one CPU thread that swaps among several

contexts, or some combination thereof. CPU threads can be lightweight (pthreads,

OpenMP, etc.) or heavyweight (MPI). Note that any CPU multi-threading or message-

passing API or library can be used, as CPU thread management is completely

orthogonal to CUDA. For example, one can add GPU processing to an existing MPI

application by porting the compute-intensive portions of the code without changing the

communication structure.

Even though a GPU can execute calls from one context at a time, it can belong to

multiple contexts. For example, it is possible for several CPU threads to establish

separate contexts with the same GPU (though multiple CPU threads within the same

process accessing the same GPU would normally share the same context by default).

The CUDA driver manages the GPU’s switching among those contexts (switching to the

next waiting context whenever the GPU goes idle) as well as partitioning memory

among the contexts (GPU memory allocated in one context cannot be accessed from

another context since the allocations are in separate virtual address spaces).

8.3 SELECTING A GPU

In many cases, the intent is for each CPU thread to control a different GPU. Achieving

this is straightforward if a program spawns as many lightweight threads as there are

GPUs – one can derive GPU index from thread ID. For example, OpenMP thread ID can

be readily used to select GPUs.

MPI rank can be used to choose a GPU reliably as long as all MPI processes are launched

on a single host node. However, when MPI processes are launched across several

cluster nodes, the assignment of processes to host nodes depends on the MPI

implementation and launch configuration (hostfile), preventing reliable selection of a

unique GPU. To address this issue, one could implement a negotiation protocol among

MPI processes running on the same host (using MPI_Get_processor_name() call), so that

each one claims a unique GPU. A less robust option is for the GPU selection to rely on a

specific allocation MPI processes to nodes (for example, allocating consecutive processes

to the same node).

Starting with CUDA 2.2, Linux drivers provide an alternative and much simpler way to

ensure that each GPU is assigned to at most one context – the administrator can select

exclusive mode via the SMI (System Management Interface) tool that comes with the

driver. In exclusive mode, if the application does not specify a GPU with a

cudaSetDevice() call, the context is no longer created on GPU 0, but on a GPU without

an active context. If there are no available GPUs, or if cudaSetDevice() specifies a GPU

already having an active context, the first CUDA call that attempts to change the device

state will fail and return an error.

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 63

8.4 INTER-GPU COMMUNICATION

All inter-GPU communication takes place via host nodes. GPU and the controlling CPU

thread communicate via memcopies, while CPU threads exchange data using the same

methods as applications not accelerated with GPUs. Thus, best performance is achieved

when one follows best practices for the CPU-GPU communication as well as CPU-CPU

communication. Note that the two are independent and orthogonal.

Communication between CPU and GPU is most efficient when using pinned memory on

the CPU. Pinned memory enables asynchronous memory copies (allowing for overlap

with both CPU and GPU execution), as well as improves PCIe throughput on FSB

systems. Please refer to the CUDA C Programming Guide for more details and examples

of pinned memory usage.

Lightweight CPU threads exchange data most efficiently via shared memory. Note that

in order for a pinned memory region to be viewed as pinned by CPU threads other than

the one that allocated it, one must call cudaHostAlloc() with the cudaHostAllocPortable

flag. A common communication pattern will be for one CPU thread to copy data from

its GPU to a shared host memory region, after which another CPU thread will copy the

data to its GPU. Users of NUMA systems will have to follow the same best practices as

for communication between non-GPU accelerated CPU threads.

Communication between heavy-weight processes takes place via message passing, for

example MPI. Once data has been copied from GPU to CPU it is transferred to another

process by calling one of the MPI functions. For example, one possible pattern when

exchanging data between two GPUs is for a CPU thread to call a device-to-host

cudaMemcpy(), then MPI_Sendrecv(), then a host-to-device cudaMemcpy(). Note that

performance of the MPI function is not dependent on the fact that data originated at or is

destined for a GPU. Since MPI provides several variations for most of its

communication functions, the choice of a function should be dictated by the best

practices guide for the MPI implementation as well as the system and network.

8.5 COMPILING MULTI-GPU APPLICATIONS

Code that includes GPU kernels or CUDA runtime kernel launch syntax must be

compiled with nvcc, the compiler driver. nvcc invokes either gcc (on Linux) or Microsoft

Visual C++ compiler (on Windows) for non-GPU code. One can pass options to the host

C/C++ compiler through nvcc by using –Xcompiler option (for more details please refer

to nvcc documentation included in the CUDA toolkit). For example, one would specify

nvcc –Xcompiler /openmp in order to pass the -fopenmp option to the host gcc compiler

(the same option for MSVC compiler is /openmp).

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 64

MPI applications are typically compiled using mpicc, the MPI compiler driver. While it

is possible to pass all the necessary flags through nvcc, it is often simpler to compile MPI

code and CUDA kernel code into separate object files. This approach also fits many

larger projects well, since they separate the communication and computation source

code already.

8.6 INFINIBAND

NVIDIA GPUDirect™ technology allows the sharing of CUDA pinned host memory

with other devices. This allows accelerated transfers of GPU data to other devices, such

as supported Infiniband network adapters. If GPUDirect support is not available for

your network device, network transfer throughput can be reduced. A possible

workaround is to disable RDMA. For the OpenMPI implementation, this can be

achieved by passing the flag –mca btl_openib_flags 1 to mpirun.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 65

Appendix A.
RECOMMENDATIONS AND BEST PRACTICES

This appendix contains a list of all the recommendations for optimization and the list of

best practices that are explained in this document.

A.1 Overall Performance Optimization
Strategies

Performance optimization revolves around three basic strategies:

 Maximizing parallel execution

 Optimizing memory usage to achieve maximum memory bandwidth

 Optimizing instruction usage to achieve maximum instruction throughput

Maximizing parallel execution starts with structuring the algorithm in a way that

exposes as much data parallelism as possible. Once the parallelism of the algorithm has

been exposed, it needs to be mapped to the hardware as efficiently as possible. This is

done by carefully choosing the execution configuration of each kernel launch. The

application should also maximize parallel execution at a higher level by explicitly

exposing concurrent execution on the device through streams, as well as maximizing

concurrent execution between the host and the device.

Optimizing memory usage starts with minimizing data transfers between the host and

the device because those transfers have much lower bandwidth than internal device data

transfers. Kernel access to global memory also should be minimized by maximizing the

use of shared memory on the device. Sometimes, the best optimization might even be to

avoid any data transfer in the first place by simply recomputing the data whenever it is

needed.

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 66

The effective bandwidth can vary by an order of magnitude depending on the access

pattern for each type of memory. The next step in optimizing memory usage is therefore

to organize memory accesses according to the optimal memory access patterns. This

optimization is especially important for global memory accesses, because latency of

access costs hundreds of clock cycles. Shared memory accesses, in counterpoint, are

usually worth optimizing only when there exists a high degree of bank conflicts.

As for optimizing instruction usage, the use of arithmetic instructions that have low

throughput should be avoided. This suggests trading precision for speed when it does

not affect the end result, such as using intrinsics instead of regular functions or single

precision instead of double precision. Finally, particular attention must be paid to

control flow instructions due to the SIMT (single instruction multiple thread) nature of

the device.

A.2 High-Priority Recommendations

 To get the maximum benefit from CUDA, focus first on finding ways to parallelize

sequential code. (Section 0)

 Use the effective bandwidth of your computation as a metric when measuring

performance and optimization benefits. (Section 2.2)

 Minimize data transfer between the host and the device, even if it means running

some kernels on the device that do not show performance gains when compared with

running them on the host CPU. (Section 3.1)

 Ensure global memory accesses are coalesced whenever possible. (Section 3.2.1)

 Minimize the use of global memory. Prefer shared memory access where possible.

(Section 5.2)

 Avoid different execution paths within the same warp. (Section 6.1)

A.3 Medium-Priority Recommendations

 Accesses to shared memory should be designed to avoid serializing requests due to

bank conflicts. (Section 3.2.2.1)

 Use shared memory to avoid redundant transfers from global memory. (Section

3.2.2.2)

 To hide latency arising from register dependencies, maintain sufficient numbers of

active threads per multiprocessor (i.e., sufficient occupancy). (Sections 3.2.6 and 4.3)

 The number of threads per block should be a multiple of 32 threads, because this

provides optimal computing efficiency and facilitates coalescing. (Section 4.4)

 Use the fast math library whenever speed trumps precision. (Section 5.1.4)

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 67

 Prefer faster, more specialized math functions over slower, more general ones when

possible. (Section 5.1.4)

 Use signed integers rather than unsigned integers as loop counters. (Section 6.3)

A.4 Low-Priority Recommendations

 On version 2.2 of the CUDA Toolkit (and later), use zero-copy operations on

integrated GPUs. (Section 3.1.3)

 For kernels with long argument lists, place some arguments into constant memory to

save shared memory. (Section 3.2.2.4)

 Use shift operations to avoid expensive division and modulo calculations. (Section

5.1.1)

 Avoid automatic conversion of doubles to floats. (Section 5.1.3)

 Make it easy for the compiler to use branch predication in lieu of loops or control

statements. (Section 6.2)

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 68

Appendix B.
NVCC COMPILER SWITCHES

B.1 NVCC

The NVIDIA nvcc compiler driver converts .cu files into C for the host system and

CUDA assembly or binary instructions for the device. It supports a spate of switches, of

which the following are especially useful for optimization and related best practices:

 -arch=sm_13 or higher is required for double precision. See Section 7.2.1.

 –maxrregcount=N specifies the maximum number of registers kernels can use at a per-

file level. See Section 3.2.6.1. (See also the __launch_bounds__ qualifier discussed in

Section B.17 of the CUDA C Programming Guide to control the number of registers

used on a per-kernel basis.)

 --ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and constant

memory usage.

 –use_fast_math compiler option of nvcc coerces every functionName() call to the

equivalent __functionName() call. This makes the code run faster at the cost of slightly

diminished precision and accuracy. See Section 5.1.4.

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 69

Appendix C.
REVISION HISTORY

C.1 Version 3.0

 Added compute capability 2.0.

 Devices of compute capability 2.0 have an L1 cache of configurable size for global and local
memory (see Section F.4.1 of the CUDA C Programming Guide). Note that the L1 cache has higher
bandwidth than the texture cache and therefore obviates some of the benefits of texture fetch
seen in devices of compute capability 1.x. See Section 3.2.4.1.

 Removed references to device emulation mode, which is deprecated in CUDA Toolkit 3.0 and
will be removed in CUDA Toolkit 3.1.

 The CUFFT and CUBLAS libraries can now interoperate with applications that use the Driver
API.

 Added a recommendation for the use of exp2() or exp10() in preference to pow() to Section

5.1.4.

 The __launch_bounds__ kernel definition qualifier can now be used to control register

usage on a per-kernel basis (in contrast to the -maxrregcount command-line option of

nvcc, which controls this on a per-file basis). See Section 3.2.6.1 of this guide and

Section B.17 of the CUDA C Programming Guide.

 Note importance of distinguishing single-precision floating-point constants and

arithmetic from double-precision constants and arithmetic for performance on

devices of compute capability 2.0 in Section 5.1.3.

 Devices of compute capability 2.0 can multicast shared memory accesses in addition

to the broadcast mechanism in devices of compute capability 1.x.

 Added Chapter 8 on multi-GPU programming.

Multi-GPU Programming

www.nvidia.com

CUDA C Best Practices Guide DG-05603-001_v4.0 | 70

C.2 Version 3.1

 Added Section 3.3 on memory allocation.

 Added fourth bullet to rules of thumb for block size selection in Section 4.4.

 Added Section 6.3 on signed versus unsigned loop counters.

C.3 Version 3.2

 CUdeviceptr is now a 64-bit value in 64-bit applications, so it is no longer necessary to

cast CUdeviceptr values with (void*)(size_t) when passing them as arguments to

kernels using the CUDA Driver API; this casting is now effectively a no-op. As such,

the type casts have been removed from the example code in Section 1.3.4.

 Corrected discussion in Section 3.2.6 of the necessary numbers of active threads per

multiprocessor to hide latency on devices of compute capability 2.0.

C.4 Version 4.0

 Added recommendation for the use of explicit multiplication in place of pow() for

small integer powers in Section 5.1.4.

 Added recommendations for the use (when applicable) of sinpi(), cospi(), cbrt(),

and rcbrt() in Section 5.1.4.

 Modified API recommendation in Section 1.3: most applications should now prefer

the CUDA Runtime API over the CUDA Driver API.

 Revised Chapter 8 to better reflect the multi-GPU features of CUDA Toolkit 4.0.

 Minor clarifications.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR

A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infringement of patents or other

rights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or systems without

express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and

other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2011 NVIDIA Corporation. All rights reserved.

	Preface
	What is This Document?
	Who Should Read This Guide?
	Recommendations and Best Practices
	Contents

	Chapter 1. Parallel Computing with CUDA
	1.1 Heterogeneous Computing with CUDA
	1.1.1 Differences Between Host and Device
	1.1.2 What Runs on a CUDA-Enabled Device?
	1.1.3 Maximum Performance Benefit

	1.2 Understanding the Programming Environment
	1.2.1 CUDA Compute Capability
	1.2.2 Additional Hardware Data
	1.2.3 CUDA Runtime and CUDA Driver API Version
	1.2.4 Which Version to Target

	1.3 CUDA APIs
	1.3.1 CUDA Runtime API
	1.3.2 CUDA Driver API
	1.3.3 When to Use Which API
	1.3.4 Comparing Code for Different APIs

	Chapter 2. Performance Metrics
	2.1 Timing
	2.1.1 Using CPU Timers
	2.1.2 Using CUDA GPU Timers

	2.2 Bandwidth
	2.2.1 Theoretical Bandwidth Calculation
	2.2.2 Effective Bandwidth Calculation
	2.2.3 Throughput Reported by cudaprof

	Chapter 3. Memory Optimizations
	3.1 Data Transfer Between Host and Device
	3.1.1 Pinned Memory
	3.1.2 Asynchronous Transfers and Overlapping Transfers with Computation
	3.1.3 Zero Copy

	3.2 Device Memory Spaces
	3.2.1 Coalesced Access to Global Memory
	3.2.1.1 A Simple Access Pattern
	3.2.1.2 A Sequential but Misaligned Access Pattern
	3.2.1.3 Effects of Misaligned Accesses
	3.2.1.4 Strided Accesses

	3.2.2 Shared Memory
	3.2.2.1 Shared Memory and Memory Banks
	3.2.2.2 Shared Memory in Matrix Multiplication (C = AB)
	3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT)
	3.2.2.4 Shared Memory Use by Kernel Arguments

	3.2.3 Local Memory
	3.2.4 Texture Memory
	3.2.4.1 Textured Fetch vs. Global Memory Read
	3.2.4.2 Additional Texture Capabilities
	3.2.4.3 Texture Format Recommendation

	3.2.5 Constant Memory
	3.2.6 Registers
	3.2.6.1 Register Pressure

	3.3 Allocation

	Chapter 4. Execution Configuration Optimizations
	4.1 Occupancy
	4.2 Calculating Occupancy
	4.3 Hiding Register Dependencies
	4.4 Thread and Block Heuristics
	4.5 Effects of Shared Memory

	Chapter 5. Instruction Optimizations
	5.1 Arithmetic Instructions
	5.1.1 Division and Modulo Operations
	5.1.2 Reciprocal Square Root
	5.1.3 Other Arithmetic Instructions
	5.1.4 Math Libraries

	5.2 Memory Instructions

	Chapter 6. Control Flow
	6.1 Branching and Divergence
	6.2 Branch Predication
	6.3 Loop counters signed vs. unsigned

	Chapter 7. Getting the Right Answer
	7.1 Debugging
	7.2 Numerical Accuracy and Precision
	7.2.1 Single vs. Double Precision
	7.2.2 Floating-Point Math Is Not Associative
	7.2.3 Promotions to Doubles and Truncations to Floats
	7.2.4 IEEE 754 Compliance
	7.2.5 x86 80-bit Computations

	Chapter 8. Multi-GPU Programming
	8.1 Introduction to Multi-GPU
	8.2 Multi-GPU Programming
	8.3 Selecting a GPU
	8.4 Inter-GPU communication
	8.5 Compiling Multi-GPU Applications
	8.6 Infiniband

	Appendix A. Recommendations and Best Practices
	Appendix B. NVCC Compiler Switches
	Appendix C. Revision History

