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PREFACE 

WHAT IS THIS DOCUMENT? 

This Best Practices Guide is a manual to help developers obtain the best performance 

from the NVIDIA® CUDA™ architecture using version 4.0 of the CUDA Toolkit. It 

presents established optimization techniques and explains coding metaphors and idioms 

that can greatly simplify programming for the CUDA architecture. 

While the contents can be used as a reference manual, you should be aware that some 

topics are revisited in different contexts as various programming and configuration 

topics are explored. As a result, it is recommended that first-time readers proceed 

through the guide sequentially. This approach will greatly improve your understanding 

of effective programming practices and enable you to better use the guide for reference 

later. 

WHO SHOULD READ THIS GUIDE? 

This guide is intended for programmers who have a basic familiarity with the CUDA 

programming environment. You have already downloaded and installed the CUDA 

Toolkit and have written successful programs using it. The discussions in this guide all 

use the C programming language, so you should be comfortable reading C. 

This guide refers to and relies on several other documents that you should have at your 

disposal for reference, all of which are available at no cost from the CUDA website 

http:/www.nvidia.com/object/cuda_develop.html. The following documents are 

especially important resources: 

  CUDA Quickstart Guide 

  CUDA C Programming Guide 

http://www.nvidia.com/object/cuda_develop.html
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  CUDA Reference Manual  

Be sure to download the correct manual for the CUDA Toolkit version and operating 

system you are using. 

RECOMMENDATIONS AND BEST PRACTICES 

Throughout this guide, specific recommendations are made regarding the design and 

implementation of CUDA C code. These recommendations are categorized by priority, 

which is a blend of the effect of the recommendation and its scope. Actions that present 

substantial improvements for most CUDA applications have the highest priority, while 

small optimizations that affect only very specific situations are given a lower priority. 

Before implementing lower priority recommendations, it is good practice to make sure 

all higher priority recommendations that are relevant have already been applied. This 

approach will tend to provide the best results for the time invested and will avoid the 

trap of premature optimization. 

The criteria of benefit and scope for establishing priority will vary depending on the 

nature of the program. In this guide, they represent a typical case. Your code might 

reflect different priority factors. Regardless of this possibility, it is good practice to verify 

that no higher-priority recommendations have been overlooked before undertaking 

lower-priority items. 

Appendix A of this document lists all the recommendations and best practices, grouping 

them by priority and adding some additional helpful observations. 

Code samples throughout the guide omit error checking for conciseness. Production 

code should, however, systematically check the error code returned by each API call and 

check for failures  in kernel launches (or groups of kernel launches in the case of 

concurrent kernels) by calling cudaGetLastError(). 

CONTENTS 

The remainder of this guide is divided into the following sections: 

 Parallel Computing with CUDA: Important aspects of the parallel programming 

architecture.  

 Performance Metrics: How should performance be measured in CUDA applications 

and what are the factors that most influence performance? 

 Memory Optimizations: Correct memory management is one of the most effective 

means of improving performance. This chapter explores the different kinds of 

memory available to CUDA applications. 
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 Execution Configuration Optimizations: How to make sure your CUDA application is 

exploiting all the available resources on the GPU. 

 Instruction Optimizations: Certain operations run faster than others. Using faster 

operations and avoiding slower ones often confers remark¬able benefits. 

 Control Flow: Carelessly designed control flow can force parallel code into serial 

execution; whereas thoughtfully designed control flow can help the hardware 

perform the maximum amount of work per clock cycle.  

 Getting the Right Answer: How to debug code and how to handle differences in how 

the CPU and GPU represent floating-point values. 
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Chapter 1.  
PARALLEL COMPUTING WITH CUDA 

This chapter reviews heterogeneous computing with CUDA, explains the limits of 

performance improvement, and helps you choose the right version of CUDA and which 

application programming interface (API) to use when programming. 

1.1 HETEROGENEOUS COMPUTING WITH CUDA 

CUDA C programming involves running code on two different platforms concurrently: 

a host system with one or more CPUs and one or more devices (frequently graphics 

adapter cards) with CUDA-enabled NVIDIA GPUs. 

While NVIDIA devices are frequently associated with rendering graphics, they are also 

powerful arithmetic engines capable of running thousands of lightweight threads in 

parallel. This capability makes them well suited to computations that can leverage 

parallel execution well.  

However, the device is based on a distinctly different design from the host system, and 

it’s important to understand those differences and how they determine the performance 

of CUDA applications to use CUDA effectively. 

1.1.1 Differences Between Host and Device 

The primary differences occur in threading and memory access: 

 Threading resources. Execution pipelines on host systems can support a limited 

number of concurrent threads. Servers that have four quad-core processors today can 

run only 16 threads concurrently (32 if the CPUs support HyperThreading.) By 

comparison, the smallest executable unit of parallelism on a CUDA device comprises 
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32 threads (a warp). All NVIDIA GPUs can support at least 768 concurrently active 

threads per multiprocessor, and some GPUs support 1,024 or more active threads per 

multiprocessor (see Section F.1 of the CUDA C Programming Guide). On devices that 

have 30 multiprocessors (such as the NVIDIA® GeForce® GTX 280), this leads to more 

than 30,000 active threads. 

 Threads. Threads on a CPU are generally heavyweight entities. The operating system 

must swap threads on and off of CPU execution channels to provide multithreading 

capability. Context switches (when two threads are swapped) are therefore slow and 

expensive. By comparison, threads on GPUs are extremely lightweight. In a typical 

system, thousands of threads are queued up for work (in warps of 32 threads each). If 

the GPU must wait on one warp of threads, it simply begins executing work on 

another. Because separate registers are allocated to all active threads, no swapping of 

registers or state need occur between GPU threads. Resources stay allocated to each 

thread until it completes its execution. 

 RAM. Both the host system and the device have RAM. On the host system, RAM is 

generally equally accessible to all code (within the limitations enforced by the 

operating system). On the device, RAM is divided virtually and physically into 

different types, each of which has a special purpose and fulfills different needs. The 

types of device RAM are explained in the CUDA C Programming Guide and in Chapter 

3 of this document.  

These are the primary hardware differences between CPU hosts and GPU devices with 

respect to parallel programming. Other differences are discussed as they arise elsewhere 

in this document. 

1.1.2 What Runs on a CUDA-Enabled Device? 

Because of the considerable differences between the host and the device, it’s important 

to partition applications so that each hardware system is doing the work it does best. 

The following issues should be considered when determining what parts of an 

application to run on the device: 

 The device is ideally suited for computations that can be run on numerous data 

elements simultaneously in parallel. This typically involves arithmetic on large data 

sets (such as matrices) where the same operation can be performed across thousands, 

if not millions, of elements at the same time. This is a requirement for good 

performance on CUDA: the software must use a large number of threads. The 

support for running numerous threads in parallel derives from the CUDA 

architecture’s use of a lightweight threading model. 

 There should be some coherence in memory access by device code. Certain memory 

access patterns enable the hardware to coalesce groups of reads or writes of multiple 

data items into one operation. Data that cannot be laid out so as to enable coalescing, 

or that doesn’t have enough locality to use textures or L1 efficiently, will not enjoy 

much of a performance benefit when used in computations on CUDA. 
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 To use CUDA, data values must be transferred from the host to the device along the 

PCI Express (PCIe) bus. These transfers are costly in terms of performance and should 

be minimized. (See Section 3.1.) This cost has several ramifications: 

● The complexity of operations should justify the cost of moving data to and from 

the device. Code that transfers data for brief use by a small number of threads will 

see little or no performance benefit. The ideal scenario is one in which many 

threads perform a substantial amount of work.  

For example, transferring two matrices to the device to perform a matrix addition 

and then transferring the results back to the host will not realize much 

performance benefit. The issue here is the number of operations performed per 

data element transferred. For the preceding procedure, assuming matrices of size 

N×N, there are N2 operations (additions) and 3N2 elements transferred, so the ratio 

of operations to elements transferred is 1:3 or O(1). Performance benefits can be 

more readily achieved when this ratio is higher. For example, a matrix 

multiplication of the same matrices requires N3 operations (multiply-add), so the 

ratio of operations to elements transferred is O(N), in which case the larger the 

matrix the greater the performance benefit. The types of operations are an 

additional factor, as additions have different complexity profiles than, for example, 

trigonometric functions. It is important to include the overhead of transferring 

data to and from the device in determining whether operations should be 

performed on the host or on the device. 

● Data should be kept on the device as long as possible. Because transfers should be 

minimized, programs that run multiple kernels on the same data should favor 

leaving the data on the device between kernel calls, rather than transferring 

intermediate results to the host and then sending them back to the device for 

subsequent calculations. So, in the previous example, had the two matrices to be 

added already been on the device as a result of some previous calculation, or if the 

results of the addition would be used in some subsequent calculation, the matrix 

addition should be performed locally on the device. This approach should be used 

even if one of the steps in a sequence of calculations could be performed faster on 

the host. Even a relatively slow kernel may be advantageous if it avoids one or 

more PCIe transfers. Section 3.1 provides further details, including the 

measurements of bandwidth between the host and the device versus within the 

device proper. 
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1.1.3 Maximum Performance Benefit 

 

High Priority: To get the maximum benefit from CUDA, focus first on finding ways 
to parallelize sequential code. 

The amount of performance benefit an application will realize by running on CUDA 

depends entirely on the extent to which it can be parallelized. As mentioned previously, 

code that cannot be sufficiently parallelized should run on the host, unless doing so 

would result in excessive transfers between the host and the device. 

Amdahl’s law specifies the maximum speed-up that can be expected by parallelizing 

portions of a serial program. Essentially, it states that the maximum speed-up (S) of a 

program is : 

   
 

        
 
 

 

where P is the fraction of the total serial execution time taken by the portion of code that 

can be parallelized and N is the number of processors over which the parallel portion of 

the code runs. 

The larger N is (that is, the greater the number of processors), the smaller the P/N 

fraction. It can be simpler to view N as a very large number, which essentially 

transforms the equation into S = 1 / 1 P. Now, if ¾ of a program is parallelized, the 

maximum speed-up over serial code is 1 / (1 – ¾) = 4. 

For most purposes, the key point is that the greater P is, the greater the speed-up. An 

additional caveat is implicit in this equation, which is that if P is a small number (so not 

substantially parallel), increasing N does little to improve performance. To get the 

largest lift, best practices suggest spending most effort on increasing P; that is, by 

maximizing the amount of code that can be parallelized. 

1.2 UNDERSTANDING THE PROGRAMMING 
ENVIRONMENT 

With each generation of NVIDIA processors, new features are added to the GPU that 

CUDA can leverage. Consequently, it’s important to understand the characteristics of 

the architecture.  

Programmers should be aware of two version numbers. The first is the compute 

capability, and the second is the version number of the CUDA Runtime and CUDA 

Driver APIs. 
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1.2.1 CUDA Compute Capability 

The compute capability describes the features of the hardware and reflects the set of 

instructions supported by the device as well as other specifications, such as the 

maximum number of threads per block and the number of registers per multiprocessor. 

Higher compute capability versions are supersets of lower (that is, earlier) versions, and 

so they are backward compatible.  

The compute capability of the GPU in the device can be queried programmatically as 

illustrated in the CUDA SDK in the deviceQuery sample. The output for that program is 

shown in Figure 1.1. This information is obtained by calling cudaGetDeviceProperties() 

and accessing the information in the structure it returns. 

 

Figure 1.1 Sample CUDA Configuration Data Reported by deviceQuery 

The major and minor revision numbers of the compute capability are shown on the third 

and fourth lines of Figure 1.1. Device 0 of this system has compute capability 1.1. 

More details about the compute capabilities of various GPUs are in Appendices A and F 

of the CUDA C Programming Guide. In particular, developers should note the number of 

multiprocessors on the device, the number of registers and the amount of memory 

available, and any special capabilities of the device. 

1.2.2 Additional Hardware Data 

Certain hardware features are not described by the compute capability. For example, the 

ability to overlap kernel execution with asynchronous data transfers between the host 

and the device is available on most but not all GPUs with compute capability 1.1. In such 

cases, call cudaGetDeviceProperties() to determine whether the device is capable of a 

certain feature. For example, the deviceOverlap field of the device property structure 
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indicates whether overlapping kernel execution and data transfers is possible (displayed 

in the “Concurrent copy and execution” line of Figure 1.1); likewise, the 

canMapHostMemory field indicates whether zero-copy data transfers can be performed. 

1.2.3 CUDA Runtime and CUDA Driver API Version 

The CUDA Driver API and the CUDA Runtime are two of the programming interfaces 

to CUDA. Their version number enables developers to check the features associated 

with these APIs and decide whether an application requires a newer (later) version than 

the one currently installed. This is important because the CUDA Driver API is backward 

compatible but not forward compatible, meaning that applications, plug-ins, and libraries 

(including the CUDA Runtime) compiled against a particular version of the Driver API 

will continue to work on subsequent (later) driver releases. However, applications, plug-

ins, and libraries (including the CUDA Runtime) compiled against a particular version 

of the Driver API may not work on earlier versions of the driver, as illustrated in Figure 

1.2. 

1.0 

Driver

Apps,

Libs & 

Plug-ins

1.1 

Driver 

Apps,

Libs & 

Plug-ins

2.0 

Driver 

Apps,

Libs & 

Plug-ins

Compatible Incompatible

...

...

 

Figure 1.2 Compatibility of CUDA versions 

1.2.4 Which Version to Target 

When in doubt about the compute capability of the hardware that will be present at 

runtime, it is best to assume a compute capability of 1.0 as defined in the CUDA C 

Programming Guide, Section F.1. 

To target specific versions of NVIDIA hardware and CUDA software, use the  

–arch, -code, and –gencode options of nvcc.  Code that contains double-precision 

arithmetic, for example, must be compiled with “-arch=sm_13” (or higher compute 

capability), otherwise double-precision arithmetic will get demoted to single-precision 
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arithmetic (see Section 7.2.1). This and other compiler switches are discussed further in 

Appendix B.  

1.3 CUDA APIS 

The host runtime component of the CUDA software environment can be used only by 

host functions. It provides functions to handle the following: 

 Device management 

 Context management 

 Memory management 

 Code module management 

 Execution control 

 Texture reference management 

 Interoperability with OpenGL and Direct3D 

It comprises two APIs: 

 A low-level API called the CUDA Driver API 

 A higher-level API called the CUDA Runtime API that is implemented on top of the 

CUDA Driver API 

Since version 3.1 of the CUDA software, these APIs are interoperable; applications can 

do most operations in the more streamlined CUDA Runtime API while seamlessly 

interoperating with the lower-level interfaces provided by the CUDA Driver API on an 

as-needed basis. 

Most commonly, applications will use the CUDA Runtime API, which greatly eases 

device management by providing implicit initialization, context management, and 

device code module management. 

In contrast, while the CUDA Driver API offers more explicit control in certain limited 

circumstances, it requires more code and is somewhat harder to program. For example, 

it is more difficult to configure and launch kernels using the CUDA Driver API, since the 

execution configuration and kernel parameters must be specified with explicit function 

calls instead of the execution configuration syntax (<<<…>>>). 

The C/C++ host code generated by nvcc utilizes the CUDA Runtime, so applications that 

link to this code will depend on the CUDA Runtime; similarly, any code that uses the 

CUBLAS, CUFFT, and other CUDA Toolkit libraries will also depend on the CUDA 

Runtime, which is used internally by these libraries. 

The two APIs can be easily distinguished: the CUDA Driver API is delivered through 

the nvcuda/libcuda dynamic library and all its entry points are prefixed with cu; while 
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the CUDA Runtime is delivered through the cudart dynamic library and all its entry 

points are prefixed with cuda. Note that the APIs relate only to host code; the kernels 

that are executed on the device are the same, regardless of which API is used. 

The functions that make up these two APIs are explained in the CUDA Reference Manual. 

1.3.1 CUDA Runtime API 

The CUDA Runtime handles kernel loading and setting up kernel parameters and 

launch configuration before the kernel is launched. The implicit code initialization, 

CUDA context management, CUDA module management (cubin to function mapping), 

kernel configuration, and parameter passing are all performed by the CUDA Runtime. 

It comprises two principal parts:  

 A C-style function interface (cuda_runtime_api.h). 

 C++-style convenience wrappers (cuda_runtime.h) built on top of the C-style 

functions. 

For more information on the Runtime API, refer to Section 3.2 of the CUDA C 

Programming Guide. 

1.3.2 CUDA Driver API 

The Driver API is a lower-level API than the Runtime API. The Driver API has these 

advantages: 

 More control over device contexts 

 No C extensions in the host code, so the host code can be compiled with compilers 

other than nvcc and the host compiler it calls by default 

Its primary disadvantages are as follows: 

 Much more verbose code 

 Linking against the CUDA Driver library requires additional application complexity, 

since the driver may or may not be installed on a given target machine 

 Requires explicit management of device contexts and device code modules 

For more information on the Driver API, refer to Section 3.3 of the CUDA C Programming 

Guide. 

1.3.3 When to Use Which API 

The previous section lists some of the salient differences between the two APIs. A key 

point is that for every Runtime API function, there is an equivalent Driver API function. 

The Driver API does include a few functions omitted from the Runtime API, such as 
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functions for the explicit management of CUDA contexts, but most applications will not 

need these additional functions (and, when they do, driver/runtime interoperability 

allows the selective use of these functions on an as-needed basis), so use of the Runtime 

API for most purposes is generally preferred. 

1.3.4 Comparing Code for Different APIs 

To illustrate the difference in code between the Runtime and Driver APIs, compare 

Listings 1.1 and 1.2, which are examples of a vector addition in which two arrays are 

added.  

const unsigned int cnBlockSize = 512; 

const unsigned int cnBlocks    = 3; 

const unsigned int cnDimension = cnBlocks * cnBlockSize; 

 

// create CUDA device & context 

cudaSetDevice( 0 ); // pick first device 

 

// allocate host vectors 

float * pA = new float[cnDimension]; 

float * pB = new float[cnDimension]; 

float * pC = new float[cnDimension]; 

 

// initialize host memory 

randomInit(pA, cnDimension); 

randomInit(pB, cnDimension); 

 

// allocate device memory 

float *pDeviceMemA, *pDeviceMemB, *pDeviceMemC; 

cudaMalloc(&pDeviceMemA, cnDimension * sizeof(float)); 

cudaMalloc(&pDeviceMemB, cnDimension * sizeof(float)); 

cudaMalloc(&pDeviceMemC, cnDimension * sizeof(float)); 

 

// copy host vectors to device 

cudaMemcpy(pDeviceMemA, pA, cnDimension * sizeof(float),  

     cudaMemcpyHostToDevice); 

cudaMemcpy(pDeviceMemB, pB, cnDimension * sizeof(float), 

     cudaMemcpyHostToDevice); 

 

vectorAdd<<<cnBlocks, cnBlockSize>>> (pDeviceMemA, pDeviceMemB, 

                                      pDeviceMemC); 

 

// copy result from device to host 

cudaMemcpy ((void *) pC, pDeviceMemC, cnDimension * sizeof(float), 

  cudaMemcpyDeviceToHost); 

 

delete[] pA; 

delete[] pB; 
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delete[] pC; 

 

cudaFree(pDeviceMemA); 

cudaFree(pDeviceMemB); 

cudaFree(pDeviceMemC); 

Listing 1.1 Host code for adding two vectors using the CUDA Runtime 

Listing 1.1 consists of 27 lines of code. Listing 1.2 shows the same functionality 

implemented using the CUDA Driver API. 

const unsigned int cnBlockSize = 512; 

const unsigned int cnBlocks    = 3; 

const unsigned int cnDimension = cnBlocks * cnBlockSize; 

 

CUdevice    hDevice; 

CUcontext   hContext; 

CUmodule    hModule; 

CUfunction  hFunction; 

     

// create CUDA device & context 

cuInit(0); 

cuDeviceGet(&hContext, 0); // pick first device 

cuCtxCreate(&hContext, 0, hDevice)); 

 

cuModuleLoad(&hModule, “vectorAdd.cubin”); 

cuModuleGetFunction(&hFunction, hModule, "vectorAdd"); 

 

// allocate host vectors 

float * pA = new float[cnDimension]; 

float * pB = new float[cnDimension]; 

float * pC = new float[cnDimension]; 

 

// initialize host memory 

randomInit(pA, cnDimension); 

randomInit(pB, cnDimension); 

 

// allocate memory on the device  

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC; 

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float)); 

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));  

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float)); 

 

// copy host vectors to device 

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float)); 

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float)); 

 

// set up parameter values 

cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1); 

#define ALIGN_UP(offset, alignment) \ 
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    (offset) = ((offset) + (alignment) – 1) & ~((alignment) – 1) 

int offset = 0; 

ALIGN_UP(offset, __alignof(pDeviceMemA)); 

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemA)); 

offset += sizeof(pDeviceMemA); 

ALIGN_UP(offset, __alignof(pDeviceMemB)); 

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemB)); 

offset += sizeof(pDeviceMemB); 

ALIGN_UP(offset, __alignof(pDeviceMemC)); 

cuParamSetv(cuFunction, offset, &ptr, sizeof(pDeviceMemC)); 

offset += sizeof(pDeviceMemC); 

cuParamSetSize(cuFunction, offset); 

     

// execute kernel 

cuLaunchGrid(cuFunction, cnBlocks, 1); 

 

// copy the result from device back to host 

cuMemcpyDtoH((void *) pC, pDeviceMemC,  

             cnDimension * sizeof(float)); 

 

delete[] pA; 

delete[] pB; 

delete[] pC; 

 

cuMemFree(pDeviceMemA); 

cuMemFree(pDeviceMemB); 

cuMemFree(pDeviceMemC); 

Listing 1.2 Host code for adding two vectors using the CUDA Driver API 

Listing 1.2 contains 50 lines of code and performs several lower-level operations than the 

Runtime API. These additional calls are evident in several places, especially the setup 

necessary in the Driver API prior to the kernel launch. 
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Chapter 2.  
PERFORMANCE METRICS 

When attempting to optimize CUDA code, it pays to know how to measure performance 

accurately and to understand the role that bandwidth plays in performance 

measurement. This chapter discusses how to correctly measure performance using CPU 

timers and CUDA events. It then explores how bandwidth affects performance metrics 

and how to mitigate some of the challenges it poses. 

2.1 TIMING 

CUDA calls and kernel executions can be timed using either CPU or GPU timers. This 

section examines the functionality, advantages, and pitfalls of both approaches. 

2.1.1 Using CPU Timers 

Any CPU timer can be used to measure the elapsed time of a CUDA call or kernel 

execution. The details of various CPU timing approaches are outside the scope of this 

document, but developers should always be aware of the resolution their timing calls 

provide. 

When using CPU timers, it is critical to remember that many CUDA API functions are 

asynchronous; that is, they return control back to the calling CPU thread prior to 

completing their work. All kernel launches are asynchronous, as are memory-copy 

functions with the Async suffix on their names. Therefore, to accurately measure the 

elapsed time for a particular call or sequence of CUDA calls, it is necessary to 

synchronize the CPU thread with the GPU by calling cudaThreadSynchronize() 

immediately before starting and stopping the CPU timer. 
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cudaThreadSynchronize()blocks the calling CPU thread until all CUDA calls previously 

issued by the thread are completed.  

Although it is also possible to synchronize the CPU thread with a particular stream or 

event on the GPU, these synchronization functions are not suitable for timing code in 

streams other than the default stream. cudaStreamSynchronize() blocks the CPU thread 

until all CUDA calls previously issued into the given stream have completed. 

cudaEventSynchronize() blocks until a given event in a particular stream has been 

recorded by the GPU. Because the driver may interleave execution of CUDA calls from 

other non-default streams, calls in other streams may be included in the timing. 

Because the default stream, stream 0, exhibits synchronous behavior (an operation in the 

default stream can begin only after all preceding calls in any stream have completed; 

and no subsequent operation in any stream can begin until it finishes), these functions 

can be used reliably for timing in the default stream. 

Be aware that CPU-to-GPU synchronization points such as those mentioned in this 

section imply a stall in the GPU’s processing pipeline and should thus be used sparingly 

to minimize their performance impact. 

2.1.2 Using CUDA GPU Timers 

The CUDA event API provides calls that create and destroy events, record events (via 

timestamp), and convert timestamp differences into a floating-point value in 

milliseconds. Listing 2.1 illustrates their use. 

cudaEvent_t start, stop; 

float time; 

 

cudaEventCreate(&start); 

cudaEventCreate(&stop); 

 

cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, size_x, size_y,  

                           NUM_REPS); 

cudaEventRecord( stop, 0 ); 

cudaEventSynchronize( stop ); 

 

cudaEventElapsedTime( &time, start, stop ); 

cudaEventDestroy( start ); 

cudaEventDestroy( stop ); 

Listing 2.1 How to time code using CUDA events 

Here cudaEventRecord() is used to place the start and stop events into the default 

stream, stream 0. The device will record a timestamp for the event when it reaches that 

event in the stream. The cudaEventElapsedTime() function returns the time elapsed 

between the recording of the start and stop events. This value is expressed in 
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milliseconds and has a resolution of approximately half a microsecond. Like the other 

calls in this listing, their specific operation, parameters, and return values are described 

in the CUDA Reference Manual. Note that the timings are measured on the GPU clock, so 

the timing resolution is operating-system-independent. 

2.2 BANDWIDTH 

Bandwidth—the rate at which data can be transferred—is one of the most important 

gating factors for performance. Almost all changes to code should be made in the 

context of how they affect bandwidth. As described in Chapter 3 of this guide, 

bandwidth can be dramatically affected by the choice of memory in which data is stored, 

how the data is laid out and the order in which it is accessed, as well as other factors. 

To measure performance accurately, it is useful to calculate theoretical and effective 

bandwidth. When the latter is much lower than the former, design or implementation 

details are likely to reduce bandwidth, and it should be the primary goal of subsequent 

optimization efforts to increase it. 

High Priority: Use the effective bandwidth of your computation as a metric when 
measuring performance and optimization benefits. 

2.2.1 Theoretical Bandwidth Calculation 

Theoretical bandwidth can be calculated using hardware specifications available in the 

product literature. For example, the NVIDIA GeForce GTX 280 uses DDR (double data 

rate) RAM with a memory clock rate of 1,107 MHz and a 512-bit wide memory interface. 

Using these data items, the peak theoretical memory bandwidth of the NVIDIA GeForce 

GTX 280 is 141.6 GB/sec: 

( 1107 x 106 x ( 512/8 ) x 2 ) / 109 = 141.6 GB/sec 

In this calculation, the memory clock rate is converted in to Hz, multiplied by the 

interface width (divided by 8, to convert bits to bytes) and multiplied by 2 due to the 

double data rate. Finally, this product is divided by 109 to convert the result to GB/sec 

(GBps).  

Note that some calculations use 1,0243 instead of 109 for the final calculation. In such a 

case, the bandwidth would be 131.9 GBps. It is important to use the same divisor when 

calculating theoretical and effective bandwidth so that the comparison is valid.  
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2.2.2 Effective Bandwidth Calculation 

Effective bandwidth is calculated by timing specific program activities and by knowing 

how data is accessed by the program. To do so, use this equation: 

Effective bandwidth = (( Br + Bw ) / 109 ) / time 

Here, the effective bandwidth is in units of GBps, Br is the number of bytes read per 

kernel, Bw is the number of bytes written per kernel, and time is given in seconds. 

For example, to compute the effective bandwidth of a 2048 x 2048 matrix copy, the 

following formula could be used: 

Effective bandwidth = (( 20482 x 4 x 2 ) / 109 ) / time 

The number of elements is multiplied by the size of each element (4 bytes for a float), 

multiplied by 2 (because of the read and write), divided by 109 (or 1,0243) to obtain GB of 

memory transferred. This number is divided by the time in seconds to obtain GBps.  

2.2.3 Throughput Reported by cudaprof 

The memory throughput reported in the summary table of cudaprof, the CUDA Visual 

Profiler, differs from the effective bandwidth obtained by the calculation in Section 2.2.2 

in several respects.  

The first difference is that cudaprof measures throughput using a subset of the GPU’s 

multiprocessors and then extrapolates that number to the entire GPU, thus reporting an 

estimate of the data throughput.  

The second and more important difference is that because the minimum memory 

transaction size is larger than most word sizes, the memory throughput reported by the 

profiler includes the transfer of data not used by the kernel.  

The effective bandwidth calculation in Section 2.2.2, however, includes only data 

transfers that are relevant to the algorithm. As such, the effective bandwidth will be 

smaller than the memory throughput reported by cudaprof and is the number to use 

when optimizing memory performance. 

However, it’s important to note that both numbers are useful. The profiler memory 

throughput shows how close the code is to the hardware limit, and the comparison of 

the effective bandwidth with the profiler number presents a good estimate of how much 

bandwidth is wasted by suboptimal coalescing of memory accesses.  
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Chapter 3.  
MEMORY OPTIMIZATIONS 

Memory optimizations are the most important area for performance. The goal is to 

maximize the use of the hardware by maximizing bandwidth. Bandwidth is best served 

by using as much fast memory and as little slow-access memory as possible. This 

chapter discusses the various kinds of memory on the host and device and how best to 

set up data items to use the memory effectively. 

3.1 DATA TRANSFER BETWEEN HOST AND 
DEVICE 

The peak bandwidth between the device memory and the GPU is much higher 

(141 GBps on the NVIDIA GeForce GTX 280, for example) than the peak bandwidth 

between host memory and device memory (8 GBps on the PCIe ×16 Gen2). Hence, for 

best overall application performance, it is important to minimize data transfer between 

the host and the device, even if that means running kernels on the GPU that do not 

demonstrate any speed-up compared with running them on the host CPU. 

High Priority: Minimize data transfer between the host and the device, even if it 
means running some kernels on the device that do not show performance gains 
when compared with running them on the host CPU. 

Intermediate data structures should be created in device memory, operated on by the 

device, and destroyed without ever being mapped by the host or copied to host 

memory.  

Also, because of the overhead associated with each transfer, batching many small 

transfers into one larger transfer performs significantly better than making each transfer 

separately.  
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Finally, higher bandwidth between the host and the device is achieved when using page-

locked (or pinned) memory, as discussed in the CUDA C Programming Guide and Section 

3.1.1 of this document. 

3.1.1 Pinned Memory 

Page-locked or pinned memory transfers attain the highest bandwidth between the host 

and the device. On PCIe ×16 Gen2 cards, for example, pinned memory can attain greater 

than 5 GBps transfer rates.  

Pinned memory is allocated using the cudaMallocHost()or cudaHostAlloc() functions in 

the Runtime API. The bandwidthTest.cu program in the CUDA SDK shows how to use 

these functions as well as how to measure memory transfer performance.  

Pinned memory should not be overused. Excessive use can reduce overall system 

performance because pinned memory is a scarce resource. How much is too much is 

difficult to tell in advance, so as with all optimizations, test the applications and the 

systems they run on for optimal performance parameters. 

3.1.2 Asynchronous Transfers and Overlapping 
Transfers with Computation 

Data transfers between the host and the device using cudaMemcpy() are blocking 

transfers; that is, control is returned to the host thread only after the data transfer is 

complete. The cudaMemcpyAsync() function is a non-blocking variant of cudaMemcpy() in 

which control is returned immediately to the host thread. In contrast with cudaMemcpy(), 

the asynchronous transfer version requires pinned host memory (see Section 3.1.1), and it 

contains an additional argument, a stream ID. A stream is simply a sequence of 

operations that are performed in order on the device. Operations in different streams 

can be interleaved and in some cases overlapped—a property that can be used to hide 

data transfers between the host and the device. 

Asynchronous transfers enable overlap of data transfers with computation in two 

different ways. On all CUDA-enabled devices, it is possible to overlap host computation 

with asynchronous data transfers and with device computations. For example, Listing 

3.1 demonstrates how host computation in the routine cpuFunction() is performed 

while data is transferred to the device and a kernel using the device is executed. 

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0); 

kernel<<<grid, block>>>(a_d); 

cpuFunction(); 

Listing 3.1 Overlapping computation and data transfers 

The last argument to the cudaMemcpyAsync() function is the stream ID, which in this case 

uses the default stream, stream 0. The kernel also uses the default stream, and it will not 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.0  |  21 

begin execution until the memory copy completes; therefore, no explicit synchronization 

is needed. Because the memory copy and the kernel both return control to the host 

immediately, the host function cpuFunction() overlaps their execution.  

In Listing 3.1, the memory copy and kernel execution occur sequentially. On devices that 

are capable of “concurrent copy and execute,” it is possible to overlap kernel execution 

on the device with data transfers between the host and the device. Whether a device has 

this capability is indicated by the deviceOverlap field of a cudaDeviceProp variable (or 

listed in the output of the deviceQuery SDK sample). On devices that have this 

capability, the overlap once again requires pinned host memory, and, in addition, the 

data transfer and kernel must use different, non-default streams (streams with non-zero 

stream IDs). Non-default streams are required for this overlap because memory copy, 

memory set functions, and kernel calls that use the default stream begin only after all 

preceding calls on the device (in any stream) have completed, and no operation on the 

device (in any stream) commences until they are finished.  

Listing 3.2 illustrates the basic technique. 

cudaStreamCreate(&stream1); 

cudaStreamCreate(&stream2); 

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream1); 

kernel<<<grid, block, 0, stream2>>>(otherData_d); 

Listing 3.2 Concurrent copy and execute 

In this code, two streams are created and used in the data transfer and kernel executions 

as specified in the last arguments of the cudaMemcpyAsync call and the kernel’s execution 

configuration. 

Listing 3.2 demonstrates how to overlap kernel execution with asynchronous data 

transfer. This technique could be used when the data dependency is such that the data 

can be broken into chunks and transferred in multiple stages, launching multiple kernels 

to operate on each chunk as it arrives. Listings 3.3a and 3.3b demonstrate this. They 

produce equivalent results. The first segment shows the reference sequential 

implementation, which transfers and operates on an array of N floats (where N is 

assumed to be evenly divisible by nThreads). 

cudaMemcpy(a_d, a_h, N*sizeof(float), dir); 

kernel<<<N/nThreads, nThreads>>>(a_d); 

Listing 3.3a Sequential copy and execute 

Listing 3.3b shows how the transfer and kernel execution can be broken up into 

nStreams stages. This approach permits some overlapping of the data transfer and 

execution. 

size=N*sizeof(float)/nStreams; 

for (i=0; i<nStreams; i++) { 
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  offset = i*N/nStreams; 

  cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]); 

} 

for (i=0; i<nStreams; i++) { 

  offset = i*N/nStreams; 

  kernel<<<N/(nThreads*nStreams), nThreads,  

           0, stream[i]>>>(a_d+offset); 

} 

Listing 3.3b Staged concurrent copy and execute 

(In Listing 3.3b, it is assumed that N is evenly divisible by nThreads*nStreams.) Because 

execution within a stream occurs sequentially, none of the kernels will launch until the 

data transfers in their respective streams complete. Current hardware can 

simultaneously process an asynchronous data transfer and execute kernels. (It should be 

mentioned that it is not possible to overlap a blocking transfer with an asynchronous 

transfer, because the blocking transfer occurs in the default stream, and so it will not 

begin until all previous CUDA calls complete. It will not allow any other CUDA call to 

begin until it has completed.) A diagram depicting the timeline of execution for the two 

code segments is shown in Figure 3.1, and nStreams=4 for Listing 3.3b is shown in the 

bottom half.  

  

 

Figure 3.1 Timeline Comparison for Sequential (top) and Concurrent 
(bottom) Copy and Kernel Execution  

For this example, it is assumed that the data transfer and kernel execution times are 

comparable. In such cases, and when the execution time (tE) exceeds the transfer time 

(tT), a rough estimate for the overall time is tE + tT/nStreams for the staged version versus 

tE + tT for the sequential version. If the transfer time exceeds the execution time, a rough 

estimate for the overall time is tT + tE/nStreams. 
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3.1.3 Zero Copy 

Zero copy is a feature that was added in version 2.2 of the CUDA Toolkit. It enables GPU 

threads to directly access host memory. For this purpose, it requires mapped pinned 

(non-pageable) memory. On integrated GPUs (e.g., mobile GPUs for notebooks), 

mapped pinned memory is always a performance gain because it avoids superfluous 

copies as integrated GPU and CPU memory are physically the same. On discrete GPUs, 

mapped pinned memory is advantageous only in certain cases. Because the data is not 

cached on the GPU on devices of compute capability 1.x, mapped pinned memory 

should be read or written only once, and the global loads and stores that read and write 

the memory should be coalesced. Zero copy can be used in place of streams because 

kernel-originated data transfers automatically overlap kernel execution without the 

overhead of setting up and determining the optimal number of streams. 

 Low Priority: Use zero-copy operations on integrated GPUs for CUDA Toolkit 
version 2.2 and later. 

The host code in Listing 3.4 shows how zero copy is typically set up. 

float *a_h, *a_map; 

… 

cudaGetDeviceProperties(&prop, 0); 

if (!prop.canMapHostMemory)  

 exit(0); 

cudaSetDeviceFlags(cudaDeviceMapHost); 

cudaHostAlloc(&a_h, nBytes, cudaHostAllocMapped); 

cudaHostGetDevicePointer(&a_map, a_h, 0); 

kernel<<<gridSize, blockSize>>>(a_map); 

Listing 3.4 Zero-copy host code 

In this code, the canMapHostMemory field of the structure returned by 

cudaGetDeviceProperties() is used to check that the device supports mapping host 

memory to the device’s address space. Page-locked memory mapping is enabled by 

calling cudaSetDeviceFlags() with cudaDeviceMapHost. Note that cudaSetDeviceFlags() 

must be called prior to setting a device or making a CUDA call that requires state (that 

is, essentially, before a context is created). Page-locked mapped host memory is 

allocated using cudaHostAlloc(), and the pointer to the mapped device address space is 

obtained via the function cudaHostGetDevicePointer(). In the code in Listing 3.4, 

kernel() can reference the mapped pinned host memory using the pointer a_map in 

exactly the same was as it would if a_map referred to a location in device memory. 
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3.2 DEVICE MEMORY SPACES 

CUDA devices use several memory spaces, which have different characteristics that 

reflect their distinct usages in CUDA applications. These memory spaces include global, 

local, shared, texture, and registers, as shown in Figure 3.2.  

 

Figure 3.2 Memory Spaces on a CUDA Device 

Of these different memory spaces, global and texture memory are the most plentiful; see 

Section F.1 of the CUDA C Programming Guide for the amounts of memory available in 

each memory space at each compute capability level. Global, local, and texture memory 

have the greatest access latency, followed by constant memory, registers, and shared 

memory. 

The various principal traits of the memory types are shown in Table 3.1. 

Table 3.1 Salient Features of Device Memory 

Memory Location 

on/off chip 

Cached Access Scope Lifetime 

Register On n/a R/W 1 thread Thread 

Local Off † R/W 1 thread Thread 

Shared On n/a R/W All threads in block Block 

Global Off † R/W All threads + host Host allocation 

Constant Off Yes R All threads + host Host allocation 

Texture Off Yes R All threads + host Host allocation 

† Cached only on devices of compute capability 2.x. 

To Host 
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In the case of texture access, if a texture reference is bound to a linear (and, as of version 

2.2 of the CUDA Toolkit, pitch-linear) array in global memory, then the device code can 

write to the underlying array. Reading from a texture while writing to its underlying 

global memory array in the same kernel launch should be avoided because the texture 

caches are read-only and are not invalidated when the associated global memory is 

modified. 

3.2.1 Coalesced Access to Global Memory 

High Priority: Ensure global memory accesses are coalesced whenever possible. 

Perhaps the single most important performance consideration in programming for the 

CUDA architecture is coalescing global memory accesses. Global memory loads and 

stores by threads of a half warp (for devices of compute capability 1.x) or of a warp (for 

devices of compute capability 2.x) are coalesced by the device into as few as one 

transaction when certain access requirements are met. 

To understand these access requirements, global memory should be viewed in terms of 

aligned segments of 16 and 32 words. Figure 3.3 helps explain the coalescing of 32-bit 

words (such as floats) by a half warp. It shows global memory as rows of 64-byte 

aligned segments (16 floats). Two rows of the same color represent a 128-byte aligned 

segment. A half warp of threads that accesses the global memory is indicated at the 

bottom of the figure.  Note that this figure assumes a device of compute capability 1.x. 

 

 

Figure 3.3 Linear Memory Segments and Threads in a Half Warp 

The access requirements for coalescing depend on the compute capability of the device: 

 On devices of compute capability 1.0 or 1.1, the k-th thread in a half warp must access 

the k-th word in a segment aligned to 16 times the size of the elements being accessed; 

however, not all threads need to participate. 

 On devices of compute capability 1.2 or 1.3, coalescing is achieved for any pattern of 

accesses that fits into a segment size of 32 bytes for 8-bit words, 64 bytes for 16-bit 

words, or 128 bytes for 32- and 64-bit words. Smaller transactions may be issued to 
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avoid wasting bandwidth. More precisely, the following protocol is used to issue a 

memory transaction for a half warp: 

● Find the memory segment that contains the address requested by the lowest 

numbered active thread. Segment size is 32 bytes for 8-bit data, 64 bytes for 16-bit 

data, and 128 bytes for 32-, 64-, and 128-bit data. 

● Find all other active threads whose requested address lies in the same segment, 

and reduce the transaction size if possible: 

― If the transaction is 128 bytes and only the lower or upper half is used, reduce 

the transaction size to 64 bytes. 

― If the transaction is 64 bytes and only the lower or upper half is used, reduce the 

transaction size to 32 bytes. 

● Carry out the transaction and mark the serviced threads as inactive. 

● Repeat until all threads in the half warp are serviced. 

● On devices of compute capability 2.x, memory accesses by the threads of a warp 

are coalesced into the minimum number of L1-cache-line-sized aligned 

transactions necessary to satisfy all threads; see Section F.4.2 of the CUDA C 

Programming Guide. 

These concepts are illustrated in the following simple examples. 

3.2.1.1 A Simple Access Pattern  

The first and simplest case of coalescing can be achieved by any CUDA-enabled device: 

the k-th thread accesses the k-th word in a segment.  Note that not all threads need to 

participate. (See Figure 3.4. Note that this figure assumes a device of compute capability 

1.x, but that the figure would be much the same except twice as wide for devices of 

compute capability 2.x.) 

 

 

Figure 3.4 Coalesced Access–All Threads but One Access the 
Corresponding Word in a Segment 

This access pattern results in a single 64-byte transaction, indicated by the red rectangle. 

Note that even though one word is not requested, all data in the segment are fetched. If 

accesses by threads were permuted within this segment, still one 64-byte transaction 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.0  |  27 

would be performed by a device with compute capability 1.2 or higher, but 16 serialized 

transactions would be performed by a device with compute capability 1.1 or lower. 

3.2.1.2 A Sequential but Misaligned Access Pattern 

If sequential threads in a half warp access memory that is sequential but not aligned 

with the segments, then a separate transaction results for each element requested on a 

device with compute capability 1.1 or lower. On a device with compute capability 1.2 or 

higher, several different scenarios can arise depending on whether all addresses for a 

half warp fall within a single 128-byte segment. If the addresses fall within a 128-byte 

segment, then a single 128-byte transaction is performed, as shown in Figure 3.5. Again, 

this figure assumes a device of compute capability 1.x. 

 

 

Figure 3.5 Unaligned Sequential Addresses that Fit within a Single 128-
Byte Segment 

If a half warp accesses memory that is sequential but split across two 128-byte segments, 

then two transactions are performed. In the following case, illustrated in Figure 3.6, one 

64-byte transaction and one 32-byte transaction result.  Again, this figure assumes a 

device of compute capability 1.x. 

 

 

Figure 3.6 Misaligned Sequential Addresses that Fall within Two 128-
Byte Segments 

Memory allocated through the Runtime API, such as via cudaMalloc(), is guaranteed to 

be aligned to at least 256 bytes. Therefore, choosing sensible thread block sizes, such as 

multiples of 16, facilitates memory accesses by half warps that are aligned to segments. 
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In addition, the qualifiers __align__(8) and __align__(16) can be used when defining 

structures to ensure alignment to segments. 

3.2.1.3 Effects of Misaligned Accesses 

It is easy and informative to explore the ramifications of misaligned accesses using a 

simple copy kernel, such as the one in Listing 3.5. 

__global__ void offsetCopy(float *odata, float* idata, int offset) 

{ 

  int xid = blockIdx.x * blockDim.x + threadIdx.x + offset; 

  odata[xid] = idata[xid]; 

} 

Listing 3.5 A copy kernel that illustrates misaligned accesses 

In Listing 3.5, data is copied from the input array idata to the output array, both of 

which exist in global memory. The kernel is executed within a loop in host code that 

varies the parameter offset from 1 to 32. (Figure 3.5 and Figure 3.6 correspond to offsets 

of 1 and 17, respectively.) The effective bandwidth for the copy with various offsets on 

an NVIDIA GeForce GTX 280 (with compute capability 1.3) and an NVIDIA GeForce 

GTX 8800 (compute capability 1.0) are shown in Figure 3.7. 

 

 

Figure 3.7 Performance of offsetCopy kernel 

For the NVIDIA GeForce GTX 8800 device, global memory accesses with no offset or 

with offsets that are multiples of 16 result in a single transaction per half warp and an 

effective bandwidth of approximately 74 GBps. Otherwise, 16 transactions are issued per 

half warp resulting in an effective bandwidth of approximately 7 GBps. This roughly 8x 
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performance degradation is due to the fact that 32 bytes, the minimum transaction size, 

are fetched for each thread. However, only 4 bytes of data are used for each 32 bytes 

fetched—resulting in the 4/32=1/8 performance relative to the fully coalesced case. The 

two numbers also reflect the different data represented by effective bandwidth (4 bytes) 

versus actual bandwidth (32 bytes). 

Because of this possible performance degradation, memory coalescing is the most critical 

aspect of performance optimization of device memory. For devices of compute 

capability 1.2 and 1.3, the situation is less dire for misaligned accesses because, in all 

cases, access by a half warp of threads in this kernel results in either one or two 

transactions. 

On the NVIDIA GeForce GTX 280 device, this results in an effective bandwidth of 

between 120 GBps for a single transaction and 70 GBps for two transactions per half 

warp. The number of transactions issued for a half warp of threads depends on the 

offset and whether the warp is even- or odd-numbered. For offsets of 0 or 16, each half 

warp results in a single 64-byte transaction (Figure 3.4). For offsets of 1 through 7 or 9 

through 15, even-numbered warps result in a single 128-byte transaction (Figure 3.5) 

and odd-numbered warps result in two transactions: one 64-byte and one 32-byte 

(Figure 3.6). For offsets of 8, even-numbered warps result in one 128-byte transaction 

and odd-numbered warps result in two 32-byte transactions. The two 32-byte 

transactions, rather than a 64- and a 32-byte transaction, are responsible for the blip at 

the offset of 8 in Figure 3.7. 

3.2.1.4 Strided Accesses 

Although the relaxed coalescing restrictions for devices with compute capability 1.2 or 

higher achieve one-half full bandwidth for the offset copy case just described, 

performance on such devices can degrade when successive threads  access memory 

locations that have non-unit strides. This pattern occurs frequently when dealing with 

multidimensional data or matrices; for example, when a half warp of threads accesses 

matrix elements column-wise and the matrix is stored in row-major order. 

To illustrate the effect of strided access on effective bandwidth, see the following kernel 

strideCopy(), which copies data with a stride of stride elements between threads from 

idata to odata. 

__global__ void strideCopy(float *odata, float* idata, int stride) 

{ 

  int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride; 

  odata[xid] = idata[xid]; 

} 

Listing 3.6 A kernel to illustrate non-unit stride data copy 
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Figure 3.8 illustrates a situation that can be created using the code in Listing 3.6; namely, 

threads within a half warp access memory with a stride of 2. This action is coalesced into 

a single 128-byte transaction on an NVIDIA GeForce GTX 280 (compute capability 1.3). 

 

 

Figure 3.8 A half warp accessing memory with a stride of 2 

Although a stride of 2 results in a single transaction, note that half the elements in the 

transaction are not used and represent wasted bandwidth. As the stride increases, the 

effective bandwidth decreases until the point where 16 transactions are issued for the 16 

threads in a half warp, as indicated in Figure 3.9. 

 

Figure 3.9 Performance of strideCopy Kernel 

Note, however, that on the NVIDIA GTX 8800 device (compute capability 1.0), any non-

unit stride results in 16 separate transactions per half warp. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.0  |  31 

As illustrated in Figure 3.9, non-unit stride global memory accesses should be avoided 

whenever possible. One method for doing so utilizes shared memory, which is 

discussed in the next section. 

3.2.2 Shared Memory 

Because it is on-chip, shared memory is much faster than local and global memory. In 

fact, uncached shared memory latency is roughly 100x lower than global memory 

latency—provided there are no bank conflicts between the threads, as detailed in the 

following section.  

3.2.2.1 Shared Memory and Memory Banks 

To achieve high memory bandwidth for concurrent accesses, shared memory is divided 

into equally sized memory modules (banks) that can be accessed simultaneously. 

Therefore, any memory load or store of n addresses that spans n distinct memory banks 

can be serviced simultaneously, yielding an effective bandwidth that is n times as high 

as the bandwidth of a single bank.  

However, if multiple addresses of a memory request map to the same memory bank, the 

accesses are serialized. The hardware splits a memory request that has bank conflicts 

into as many separate conflict-free requests as necessary, decreasing the effective 

bandwidth by a factor equal to the number of separate memory requests. The one 

exception here is when all threads in a half warp address the same shared memory 

location, resulting in a broadcast.  Devices of compute capability 2.x have the additional 

ability to multicast shared memory accesses (i.e., to send copies of the same value to 

several but not all threads of the warp). 

To minimize bank conflicts, it is important to understand how memory addresses map 

to memory banks and how to optimally schedule memory requests.  

Medium Priority: Accesses to shared memory should be designed to avoid 
serializing requests due to bank conflicts. 

Shared memory banks are organized such that successive 32-bit words are assigned to 

successive banks and each bank has a bandwidth of 32 bits per clock cycle. The 

bandwidth of shared memory is 32 bits per bank per clock cycle. 

For devices of compute capability 1.x, the warp size is 32 threads and the number of 

banks is 16. A shared memory request for a warp is split into one request for the first 

half of the warp and one request for the second half of the warp. Note that no bank 

conflict occurs if only one memory location per bank is accessed by a half warp of 

threads. 

For devices of compute capability 2.x, the warp size is 32 threads and the number of 

banks is also 32. A shared memory request for a warp is not split as with devices of 
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compute capability 1.x, meaning that bank conflicts can occur between threads in the 

first half of a warp and threads in the second half of the same warp (see Section F.4.3 of 

the CUDA C Programming Guide). 

Refer to the CUDA C Programming Guide for more information on how accesses and 

banks can be matched to avoid conflicts.  

3.2.2.2 Shared Memory in Matrix Multiplication (C = AB) 

Shared memory enables cooperation between threads in a block. When multiple threads 

in a block use the same data from global memory, shared memory can be used to access 

the data from global memory only once. Shared memory can also be used to avoid 

uncoalesced memory accesses by loading and storing data in a coalesced pattern from 

global memory and then reordering it in shared memory. Aside from memory bank 

conflicts, there is no penalty for non-sequential or unaligned accesses by a half warp in 

shared memory. 

The use of shared memory is illustrated via the simple example of a matrix 

multiplication C = AB for the case with A of dimension M×16, B of dimension 16×N, and 

C of dimension M×N. To keep the kernels simple, M and N are multiples of 16. A 

natural decomposition of the problem is to use a block and tile size of 16×16 threads. 

Therefore, in terms of 16×16 tiles, A is a column matrix, B is a row matrix, and C is their 

outer product. (See Figure 3.10) A grid of N/16 by M/16 blocks is launched, where each 

thread block calculates the elements of a different tile in C from a single tile of A and a 

single tile of B. 

Note that the example discussed throughout this section assumes compute capability 

1.x; the example would be much the same for compute capability 2.x, except that it 

would have a width of 32 instead of 16. 
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Figure 3.10 Block-Column Matrix (A) Multiplied by Block-Row Matrix (B) 
with Resulting Product Matrix (C) 

To do this, the simpleMultiply kernel (Listing 3.7) calculates the output elements of a tile 

of matrix C. 

__global__ void simpleMultiply(float *a, float* b, float *c,  

        int N) 

{ 

  int row = blockIdx.y * blockDim.y + threadIdx.y; 

  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  float sum = 0.0f; 

  for (int i = 0; i < TILE_DIM; i++) { 

    sum += a[row*TILE_DIM+i] * b[i*N+col]; 

  } 

  c[row*N+col] = sum; 

} 

Listing 3.7 Unoptimized matrix multiplication 

In Listing 3.7, a, b, and c are pointers to global memory for the matrices A, B, and C, 

respectively; blockDim.x, blockDim.y, and TILE_DIM are all 16. Each thread in the 16×16 

block calculates one element in a tile of C. row and col are the row and column of the 

element in C being calculated by a particular thread. The for loop over i multiplies a 

row of A by a column of B, which is then written to C. 

The effective bandwidth of this kernel is only 8.7 GBps on an NVIDIA GeForce GTX 280 

and 0.7 GBps on an NVIDIA GeForce GTX 8800. To analyze performance, it is necessary 

to consider how half warps of threads access global memory in the for loop. Each half 
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warp of threads calculates one row of a tile of C, which depends on a single row of A 

and an entire tile of B as illustrated in Figure 3.11.  

 

Figure 3.11 Computing a Row (Half Warp) of a Tile In C Using One Row of 
A and an Entire Tile of B 

For each iteration i of the for loop, all threads in a half warp read the same value from 

global memory (the index row*TILE_DIM+i is constant within a half warp), resulting in 

16 transactions for compute capability 1.1 or lower, and 1 transaction for compute 

capability 1.2 or higher. Even though the operation requires only 1 transaction for 

compute capability 1.2 or higher, there is wasted bandwidth in the transaction because 

only 4 bytes out of a 32-byte transaction are used. For each iteration, the 16 threads in a 

half warp read a row of the B tile, which is a sequential and coalesced access for all 

compute capabilities. 

The performance on a device of any compute capability can be improved by reading a 

tile of A into shared memory as shown in Listing 3.8. 

__global__ void coalescedMultiply(float *a, float* b, float *c, 

                                  int N) 

{ 

  __shared__ float aTile[TILE_DIM][TILE_DIM]; 

 

  int row = blockIdx.y * blockDim.y + threadIdx.y; 

  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  float sum = 0.0f; 

  aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 
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  for (int i = 0; i < TILE_DIM; i++) { 

    sum += aTile[threadIdx.y][i]* b[i*N+col]; 

  } 

  c[row*N+col] = sum; 

} 

Listing 3.8 Using shared memory to improve the global memory load 
efficiency in matrix multiplication 

In Listing 3.8, each element in a tile of A is read from global memory only once, in a fully 

coalesced fashion (with no wasted bandwidth), to shared memory. Within each iteration 

of the for loop, a value in shared memory is broadcast to all threads in a half warp.  

In Listing 3.8, a __syncthreads()synchronization barrier call is not needed after reading 

the tile of A into shared memory because only threads within the half warp that write 

the data into shared memory read the data. This kernel has an effective bandwidth of 

14.3 GBps on an NVIDIA GeForce GTX 280, and 8.2 GBps on an NVIDIA GeForce GTX 

8800. 

A further improvement can be made to how Listing 3.8 deals with matrix B. In 

calculating a tile’s row of matrix C, the entire tile of B is read. The repeated reading of 

the B tile can be eliminated by reading it into shared memory once (Listing 3.9). 

__global__ void sharedABMultiply(float *a, float* b, float *c, 

     int N) 

{ 

  __shared__ float aTile[TILE_DIM][TILE_DIM], 

                   bTile[TILE_DIM][TILE_DIM]; 

  int row = blockIdx.y * blockDim.y + threadIdx.y; 

  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  float sum = 0.0f; 

  aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 

  bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col]; 

  __syncthreads(); 

  for (int i = 0; i < TILE_DIM; i++) { 

    sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x]; 

  } 

  c[row*N+col] = sum; 

} 

Listing 3.9 Improvement by reading additional data into shared memory 

Note that in Listing 3.9, a __syncthreads() call is required after reading the B tile 

because a warp reads data from shared memory that were written to shared memory by 

different warps. The effective bandwidth of this routine is 29.7 GBps on an NVIDIA 

GeForce GTX 280 and 15.7 GBps on an NVIDIA GeForce GTX 8800. Note that the 

performance improvement is not due to improved coalescing in either case, but to 

avoiding redundant transfers from global memory.  
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The results of the various optimizations are summarized in Table 3.2. 

Table 3.2 Performance Improvements Optimizing C = AB Matrix Multiply 

Optimization NVIDIA GeForce  

GTX 280 

NVIDIA GeForce  

GTX 8800 

No optimization 8.7 GBps 0.7 GBps 

Coalesced using shared 

memory to store a tile of A 
14.3 GBps 8.2 GBps 

Using shared memory to 

eliminate redundant reads 

of a tile of B 

29.7 GBps 15.7 GBps 

 

Medium Priority: Use shared memory to avoid redundant transfers from global 
memory. 

 

3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT) 

A variant of the previous matrix multiplication can be used to illustrate how strided 

accesses to global memory, as well as shared memory bank conflicts, are handled. This 

variant simply uses the transpose of A rather than B, or C = AAT. 

As in the previous section, this example assumes compute capability 1.x; it would have a 

width of 32 rather than 16 for compute capability 2.x. 

A simple implementation for C = AAT is shown in Listing 3.10. 

__global__ void simpleMultiply(float *a, float *c, int M) 

{ 

  int row = blockIdx.y * blockDim.y + threadIdx.y; 

  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  float sum = 0.0f; 

  for (int i = 0; i < TILE_DIM; i++) { 

    sum += a[row*TILE_DIM+i] * a[col*TILE_DIM+i]; 

  } 

  c[row*M+col] = sum; 

} 

Listing 3.10 Unoptimized handling of strided accesses to global memory 

In Listing 3.10, the row-th, col-th element of C is obtained by taking the dot product of 

the row-th and col-th rows of A. The effective bandwidth for this kernel is 1.1 GBps on 

an NVIDIA GeForce GTX 280 and 0.5 GBps on an NVIDIA GeForce GTX 8800. These 

results are substantially lower than the corresponding measurements for the C = AB 

kernel. The difference is in how threads in a half warp access elements of A in the 
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second term, a[col*TILE_DIM+i], for each iteration i. For a half warp of threads, col 

represents sequential columns of the transpose of A, and therefore col*TILE_DIM 

represents a strided access of global memory with a stride of 16. This results in 

uncoalesced memory accesses on devices with compute capability 1.1 or lower and 

plenty of wasted bandwidth on devices with compute capability 1.2 or higher. The way 

to avoid strided access is to use shared memory as before, except in this case a half warp 

reads a row of A into a column of a shared memory tile, as shown in Listing 3.11. 

__global__ void coalescedMultiply(float *a, float *c, int M) 

{ 

  __shared__ float aTile[TILE_DIM][TILE_DIM], 

                   transposedTile[TILE_DIM][TILE_DIM]; 

  int row = blockIdx.y * blockDim.y + threadIdx.y; 

  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  float sum = 0.0f; 

  aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 

  transposedTile[threadIdx.x][threadIdx.y] = 

 a[(blockIdx.x*blockDim.x + threadIdx.y)*TILE_DIM +  

 threadIdx.x];   

  __syncthreads(); 

  for (int i = 0; i < TILE_DIM; i++) { 

    sum += aTile[threadIdx.y][i]* transposedTile[i][threadIdx.x]; 

  } 

  c[row*M+col] = sum; 

} 

Listing 3.11 An optimized version of Listing 3.10 using coalesced reads 
from global memory 

Listing 3.11 uses the shared transposedTile to avoid uncoalesced accesses in the second 

term in the dot product, and the shared aTile technique from the previous example to 

avoid uncoalesced accesses in the first term. The effective bandwidth of this kernel is 

24.9 GBps on an NVIDIA GeForce GTX 280 and 13.2 GBps on an NVIDIA GeForce GTX 

8800. These results are slightly lower than those obtained by the final kernel for C = AB. 

The cause of the difference is shared memory bank conflicts.  

The reads of elements in transposedTile within the for loop are free of conflicts, because 

threads of each half warp read across rows of the tile, resulting in unit stride across the 

banks. However, bank conflicts occur when copying the tile from global memory into 

shared memory. To enable the loads from global memory to be coalesced, data are read 

from global memory sequentially. However, this requires writing to shared memory in 

columns, and because of the use of 16×16 tiles in shared memory, this results in a stride 

between threads of 16 banks. These 16-way bank conflicts are very expensive. The 

simple remedy is to pad the shared memory array so that it has an extra column, as in 

the following line of code. 

  __shared__ float transposedTile[TILE_DIM][TILE_DIM+1]; 
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This padding eliminates the conflicts entirely, because now the stride between threads is 

17 banks (33 banks for compute capability 2.x), which, due to modular arithmetic used 

to compute bank indices, is equivalent to a unit stride. After this change, the effective 

bandwidth is 30.4 GBps on an NVIDIA GeForce GTX 280 and 15.6 GBps on an NVIDIA 

GeForce GTX 8800, which is comparable to the results from the last C = AB kernel. 

The results of these optimizations are summarized in Table 3.3. 

Table 3.3 Performance Improvements Optimizing C = AAT Matrix 
Multiplication 

Optimization NVIDIA GeForce  

GTX 280 

NVIDIA GeForce  

GTX 8800 

No optimization 1.1 GBps 0.5 GBps 

Using shared memory to 

coalesce global reads 
24.9 GBps 13.2 GBps 

Removing bank conflicts 30.4 GBps 15.6 GBps 

These results should be compared with those in Table 3.2. As can be seen from these 

tables, judicious use of shared memory can dramatically improve performance. 

The examples in this section have illustrated three reasons to use shared memory: 

 To enable coalesced accesses to global memory, especially to avoid large strides (for 

general matrices, strides are much larger than 16) 

 To eliminate (or reduce) redundant loads from global memory 

 To avoid wasted bandwidth 

3.2.2.4 Shared Memory Use by Kernel Arguments 

Shared memory holds the parameters or arguments that are passed to kernels at launch. 

In kernels with long argument lists, it can be valuable to put some arguments into 

constant memory (and reference them there) rather than consume shared memory. 

 Low Priority: For kernels with long argument lists, place some arguments into 
constant memory to save shared memory. 

3.2.3 Local Memory 

Local memory is so named because its scope is local to the thread, not because of its 

physical location. In fact, local memory is off-chip. Hence, access to local memory is as 

expensive as access to global memory. Like global memory, local memory is not cached 

on devices of compute capability 1.x. In other words, the term “local” in the name does 

not imply faster access.  
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Local memory is used only to hold automatic variables. This is done by the nvcc 

compiler when it determines that there is insufficient register space to hold the variable. 

Automatic variables that are likely to be placed in local memory are large structures or 

arrays that would consume too much register space and arrays that the compiler 

determines may be indexed dynamically. 

Inspection of the PTX assembly code (obtained by compiling with -ptx or -keep 

command-line options to nvcc) reveals whether a variable has been placed in local 

memory during the first compilation phases. If it has, it will be declared using the .local 

mnemonic and accessed using the ld.local and st.local mnemonics. If it has not, 

subsequent compilation phases might still decide otherwise, if they find the variable 

consumes too much register space for the targeted architecture. There is no way to check 

this for a specific variable, but the compiler reports total local memory usage per kernel 

(lmem) when run with the --ptxas-options=-v option.  

3.2.4 Texture Memory 

The read-only texture memory space is cached. Therefore, a texture fetch costs one 

device memory read only on a cache miss; otherwise, it just costs one read from the 

texture cache. The texture cache is optimized for 2D spatial locality, so threads of the 

same warp that read texture addresses that are close together will achieve best 

performance. Texture memory is also designed for streaming fetches with a constant 

latency; that is, a cache hit reduces DRAM bandwidth demand, but not fetch latency.  

In certain addressing situations, reading device memory through texture fetching can be 

an advantageous alternative to reading device memory from global or constant memory. 

3.2.4.1 Textured Fetch vs. Global Memory Read 

Device memory reads through texture fetching present several potential benefits over 

reads from global memory:   

 They are cached, unlike global memory reads in devices of compute capability 1.x. 

This results in potentially higher achieved bandwidth if there is 2D locality in the 

texture fetches and can be used to avoid uncoalesced loads from global memory. 

(Note that the L1 cache in devices of compute capability 2.x has a higher bandwidth 

than the texture cache, potentially obviating this benefit in these devices, depending 

on access pattern.) 

 Packed data can be unpacked into separate variables in a single operation.  

 8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-

point values in the range [0.0, 1.0] or [-1.0, 1.0].  
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Listings 3.12 and 3.13 illustrate how textures can be used to avoid uncoalesced global 

memory accesses in the following variation of the offsetCopy kernel. This copy performs 

a shift in data, as demonstrated in the following kernel.  

__global__ void shiftCopy(float *odata, float *idata, int shift) 

{ 

  int xid = blockIdx.x * blockDim.x + threadIdx.x; 

  odata[xid] = idata[xid+shift]; 

} 

Listing 3.12 Unoptimized data shifts 

This copy kernel applies a shift to the global memory location when reading from idata, 

but writes to unshifted global memory locations in odata. The amount of shift is 

specified as a function argument to the kernel. Some degradation of performance occurs 

when the shift is neither zero nor a multiple of 16 because reading from idata will be 

either uncoalesced (compute capability 1.1 or lower) or result in transactions with 

wasted bandwidth (compute capability 1.2 or higher). Note that regardless of compute 

capability, writing to odata is fully coalesced. 

The version of this code that uses textures to perform the shifted read is shown in 

Listing 3.13. 

__global__ void textureShiftCopy(float *odata, float *idata,  

                                 int shift) 

{ 

  int xid = blockIdx.x * blockDim.x + threadIdx.x; 

  odata[xid] = tex1Dfetch(texRef, xid+shift); 

} 

Listing 3.13 Data shifts optimized by use of texture memory 

Here, the texture reference texRef is bound to the idata array in the host code and the 

function tex1Dfetch() reads the shifted memory locations of idata via a texture fetch. 

The results of both kernels (using global memory and textures for loads) on an NVIDIA 

GeForce GTX 280 and an NVIDIA GeForce GTX 8800 are given in Figure 3.12. 
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Figure 3.12 Results of Using Texture Memory to Avoid Uncoalesced 
Global Memory Access 

The benefit of using textures for cases that are not optimally coalesced is clear. Textured 

reads can maintain effective bandwidth of the unshifted, fully coalesced cases within a 

few percent. Note that shifts that are neither zero nor multiples of 16 show greater 

effective bandwidth than the offsetCopy kernel in Figure 3.7. Because all the stores in the 

shift kernels are fully coalesced with no wasted bandwidth, the shift applies only to the 

loads. 

3.2.4.2 Additional Texture Capabilities 

If textures are fetched using tex1D(), tex2D(), or tex3D() rather than tex1Dfetch(), the 

hardware provides other capabilities that might be useful for some applications, such as 

image processing. (See Table 3.4.) 

Table 3.4 Useful Features for tex1D(), tex2D(), and tex3D() Fetches 

Feature Use Caveat 

Filtering Fast, low-precision interpolation 

between texels 

Valid only if the texture 

reference returns floating-point 

data 

Normalized texture 

coordinates 

Resolution-independent coding  

Addressing modes Automatic handling of boundary 

cases¹ 

Can be used only with normalized 

texture coordinates 

¹The automatic handling of boundary cases in the bottom row of Table 3.4 refers to how a texture coordinate is resolved 

when it falls outside the valid addressing range. There are two options: clamp and wrap. If x is the coordinate and N is the 

number of texels for a one-dimensional texture, then with clamp, x is replaced by 0 if x < 0 and by 1-1/N if 1 ≤x. With wrap, 

x is replaced by frac(x) where frac(x) = x – floor(x). Floor returns the largest integer less than or equal to x. So, in clamp 

mode where N = 1, an x of 1.3 is clamped to 1.0; whereas in wrap mode, it is converted to 0.3 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.0  |  42 

 

Within a kernel call, the texture cache is not kept coherent with respect to global 

memory writes, so texture fetches from addresses that have been written via global 

stores in the same kernel call return undefined data. That is, a thread can safely read a 

memory location via texture if the location has been updated by a previous kernel call or 

memory copy, but not if it has been previously updated by the same thread or another 

thread within the same kernel call. This is relevant only when fetching from linear or 

pitch-linear memory because a kernel cannot write to CUDA arrays. 

3.2.4.3 Texture Format Recommendation 

For 8-bit texture formats when using OpenGL interoperability, note that interoperating 

with GL_RGBA8 textures on devices of compute capability 1.0, 1.1, or 1.3 runs at 

reduced performance. 

3.2.5 Constant Memory 

There is a total of 64 KB constant memory on a device. The constant memory space is 

cached. As a result, a read from constant memory costs one memory read from device 

memory only on a cache miss; otherwise, it just costs one read from the constant cache.  

For all threads of a half warp, reading from the constant cache is as fast as reading from 

a register as long as all threads read the same address. Accesses to different addresses by 

threads within a half warp are serialized, so cost scales linearly with the number of 

different addresses read by all threads within a half warp.  

Alternatively, on devices of compute capability 2.x, programs use the LoaD Uniform 

(LDU) operation; see Section F.4.4 of the CUDA C Programming Guide for details. 

3.2.6 Registers 

Generally, accessing a register consumes zero extra clock cycles per instruction, but 

delays may occur due to register read-after-write dependencies and register memory 

bank conflicts.  

The latency of read-after-write dependencies is approximately 24 cycles, but this latency 

is completely hidden on multiprocessors that have at least 192 active threads (that is, 6 

warps) for devices of compute capability 1.x (8 CUDA cores per multiprocessor * 24 

cycles of latency = 192 active threads to cover that latency). For devices of compute 

capability 2.0, which have 32 CUDA cores per multiprocessor, as many as 768 threads 

might be required to completely hide latency.  

The compiler and hardware thread scheduler will schedule instructions as optimally as 

possible to avoid register memory bank conflicts. They achieve the best results when the 

number of threads per block is a multiple of 64. Other than following this rule, an 
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application has no direct control over these bank conflicts. In particular, there is no 

register-related reason to pack data into float4 or int4 types. 

3.2.6.1 Register Pressure 

Register pressure occurs when there are not enough registers available for a given task. 

Even though each multiprocessor contains thousands of 32-bit registers (see Section F.1 

of the CUDA C Programming Guide), these are partitioned among concurrent threads. To 

prevent the compiler from allocating too many registers, use the –maxrregcount=N 

compiler command-line option (see Section B.1 below) or the launch bounds kernel 

definition qualifier (see Section B.17 of the CUDA C Programming Guide) to control the 

maximum number of registers to allocated per thread. 

3.3 ALLOCATION 

Device memory allocation and de-allocation via cudaMalloc() and cudaFree() (or their 

Driver API equivalents) are expensive operations, so device memory should be reused 

and/or sub-allocated by the application wherever possible to minimize the impact of 

allocations on overall performance. 
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Chapter 4.  
EXECUTION CONFIGURATION 
OPTIMIZATIONS 

One of the keys to good performance is to keep the multiprocessors on the device as 

busy as possible. A device in which work is poorly balanced across the multiprocessors 

will deliver suboptimal performance. Hence, it’s important to design your application to 

use threads and blocks in a way that maximizes hardware utilization and to limit 

practices that impede the free distribution of work. A key concept in this effort is 

occupancy, which is explained in the following sections.  

Another important concept is the management of system resources allocated for a 

particular task. How to manage this resource utilization is discussed in the final sections 

of this chapter. 

4.1 OCCUPANCY 

Thread instructions are executed sequentially in CUDA, and, as a result, executing other 

warps when one warp is paused or stalled is the only way to hide latencies and keep the 

hardware busy. Some metric related to the number of active warps on a multiprocessor 

is therefore important in determining how effectively the hardware is kept busy. This 

metric is occupancy.  

Occupancy is the ratio of the number of active warps per multiprocessor to the 

maximum number of possible active warps. (To determine the latter number, see the 

deviceQuery code sample in the GPU Computing SDK or refer to Appendix F in the 

CUDA C Programming Guide.) Another way to view occupancy is the percentage of the 

hardware’s ability to process warps that is actively in use. 
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Higher occupancy does not always equate to higher performance—there is a point 

above which additional occupancy does not improve performance. However, low 

occupancy always interferes with the ability to hide memory latency, resulting in 

performance degradation. 

4.2 CALCULATING OCCUPANCY  

One of several factors that determine occupancy is register availability. Register storage 

enables threads to keep local variables nearby for low-latency access. However, the set 

of registers (known as the register file) is a limited commodity that all threads resident on 

a multiprocessor must share. Registers are allocated to an entire block all at once. So, if 

each thread block uses many registers, the number of thread blocks that can be resident 

on a multiprocessor is reduced, thereby lowering the occupancy of the multiprocessor. 

The maximum number of registers per thread can be set manually at compilation time 

per-file using the –maxrregcount option or per-kernel using the __launch_bounds__ 

qualifier (see Section 3.2.6.1). 

For purposes of calculating occupancy, the number of registers used by each thread is 

one of the key factors. For example, devices with compute capability 1.0 and 1.1 have 

8,192 32-bit registers per multiprocessor and can have a maximum of 768 simultaneous 

threads resident (24 warps x 32 threads per warp). This means that in one of these 

devices, for a multiprocessor to have 100% occupancy, each thread can use at most 10 

registers. However, this approach of determining how register count affects occupancy 

does not take into account the register allocation granularity. For example, on a device of 

compute capability 1.0, a kernel with 128-thread blocks using 12 registers per thread 

results in an occupancy of 83% with 5 active 128-thread blocks per multiprocessor, 

whereas a kernel with 256-thread blocks using the same 12 registers per thread results in 

an occupancy of 66% because only two 256-thread blocks can reside on a multiprocessor. 

Furthermore, register allocations are rounded up to the nearest 256 registers per block 

on devices with compute capability 1.0 and 1.1. 

The number of registers available, the maximum number of simultaneous threads 

resident on each multiprocessor, and the register allocation granularity vary over 

different compute capabilities. Because of these nuances in register allocation and the 

fact that a multiprocessor’s shared memory is also partitioned between resident thread 

blocks, the exact relationship between register usage and occupancy can be difficult to 

determine. The --ptxas-options=-v option of nvcc details the number of registers used 

per thread for each kernel. See Section 4.2 of the CUDA C Programming Guide for the 

register allocation formulas for devices of various compute capabilities and Section F.1 

of the programming guide for the total number of registers available on those devices. 

Alternatively, NVIDIA provides an occupancy calculator in the form of an Excel 

spreadsheet that enables developers to hone in on the optimal balance and to test 

different possible scenarios more easily. This spreadsheet, shown in CUDA GPU 
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Occupancy Calculator Usage to Project Occupancy, is called 

CUDA_Occupancy_calculator.xls and is located in the tools directory of the CUDA SDK. 

 

Figure 4.1 CUDA GPU Occupancy Calculator Usage to Project Occupancy 

In addition to the calculator spreadsheet, occupancy can be determined using the CUDA 

profiler. 

4.3 HIDING REGISTER DEPENDENCIES 

Medium Priority: To hide latency arising from register dependencies, maintain 
sufficient numbers of active threads per multiprocessor (i.e., sufficient 
occupancy). 

Register dependencies arise when an instruction uses a result stored in a register written 

by an instruction before it. The latency on current CUDA-enabled GPUs is 

approximately 24 cycles, so threads must wait 24 cycles before using an arithmetic 

result. However, this latency can be completely hidden by the execution of threads in 

other warps. See Section 3.2.6 for details. 
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4.4 THREAD AND BLOCK HEURISTICS 

Medium Priority: The number of threads per block should be a multiple of 32 
threads, because this provides optimal computing efficiency and facilitates 
coalescing. 

The dimension and size of blocks per grid and the dimension and size of threads per 

block are both important factors. The multidimensional aspect of these parameters 

allows easier mapping of multidimensional problems to CUDA and does not play a role 

in performance. As a result, this section discusses size but not dimension. 

Latency hiding and occupancy depend on the number of active warps per 

multiprocessor, which is implicitly determined by the execution parameters along with 

resource (register and shared memory) constraints. Choosing execution parameters is a 

matter of striking a balance between latency hiding (occupancy) and resource 

utilization. 

Choosing the execution configuration parameters should be done in tandem; however, 

there are certain heuristics that apply to each parameter individually. When choosing 

the first execution configuration parameter—the number of blocks per grid, or grid size—

the primary concern is keeping the entire GPU busy. The number of blocks in a grid 

should be larger than the number of multiprocessors so that all multiprocessors have at 

least one block to execute. Furthermore, there should be multiple active blocks per 

multiprocessor so that blocks that aren’t waiting for a __syncthreads() can keep the 

hardware busy. This recommendation is subject to resource availability; therefore, it 

should be determined in the context of the second execution parameter—the number of 

threads per block, or block size—as well as shared memory usage. To scale to future 

devices, the number of blocks per kernel launch should be in the thousands. 

When choosing the block size, it is important to remember that multiple concurrent 

blocks can reside on a multiprocessor, so occupancy is not determined by block size 

alone. In particular, a larger block size does not imply a higher occupancy. For example, 

on a device of compute capability 1.1 or lower, a kernel with a maximum block size of 

512 threads results in an occupancy of 66 percent because the maximum number of 

threads per multiprocessor on such a device is 768. Hence, only a single block can be 

active per multiprocessor. However, a kernel with 256 threads per block on such a 

device can result in 100 percent occupancy with three resident active blocks.  

As mentioned in Section 4.1, higher occupancy does not always equate to better 

performance. For example, improving occupancy from 66 percent to 100 percent 

generally does not translate to a similar increase in performance. A lower occupancy 

kernel will have more registers available per thread than a higher occupancy kernel, 

which may result in less register spilling to local memory. Typically, once an occupancy 
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of 50 percent has been reached, additional increases in occupancy do not translate into 

improved performance. 

There are many such factors involved in selecting block size, and inevitably some 

experimentation is required. However, a few rules of thumb should be followed: 

 Threads per block should be a multiple of warp size to avoid wasting computation on 

under-populated warps and to facilitate coalescing. 

 A minimum of 64 threads per block should be used, but only if there are multiple 

concurrent blocks per multiprocessor. 

 Between 128 and 256 threads per block is a better choice and a good initial range for 

experimentation with different block sizes. 

 Use several (3 to 4) smaller thread blocks rather than one large thread block per 

multiprocessor if latency affects performance. This is particularly beneficial to kernels 

that frequently call __syncthreads(). 

Note that when a thread block allocates more registers than are available on a 

multiprocessor, the kernel launch fails, as it will when too much shared memory or too 

many threads are requested. 

4.5 EFFECTS OF SHARED MEMORY 

Shared memory can be helpful in several situations, such as helping to coalesce or 

eliminate redundant access to global memory. However, it also can act as a constraint on 

occupancy. In many cases, the amount of shared memory required by a kernel is related 

to the block size that was chosen, but the mapping of threads to shared memory 

elements does not need to be one-to-one. For example, it may be desirable to use a 32×32 

element shared memory array in a kernel, but because the maximum number of threads 

per block is 512, it is not possible to launch a kernel with 32×32 threads per block. In 

such cases, kernels with 32×16 or 32×8 threads can be launched with each thread 

processing two or four elements, respectively, of the shared memory array. The 

approach of using a single thread to process multiple elements of a shared memory 

array can be beneficial even if limits such as threads per block are not an issue. This is 

because some operations common to each element can be performed by the thread once, 

amortizing the cost over the number of shared memory elements processed by the 

thread.  

A useful technique to determine the sensitivity of performance to occupancy is through 

experimentation with the amount of dynamically allocated shared memory, as specified 

in the third parameter of the execution configuration. By simply increasing this 

parameter (without modifying the kernel), it is possible to effectively reduce the 

occupancy of the kernel and measure its effect on performance. 
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As mentioned in the previous section, once an occupancy of more than 50 percent has 

been reached, it generally does not pay to optimize parameters to obtain higher 

occupancy ratios. The previous technique can be used to determine whether such a 

plateau has been reached. 
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Chapter 5.  
INSTRUCTION OPTIMIZATIONS 

Awareness of how instructions are executed often permits low-level optimizations that 

can be useful, especially in code that is run frequently (the so-called hot spot in a 

program). Best practices suggest that this optimization be performed after all higher-

level optimizations have been completed.  

5.1 ARITHMETIC INSTRUCTIONS 

Single-precision floats provide the best performance, and their use is highly encouraged. 

The throughput of individual arithmetic operations on devices of compute capability 1.x 

is detailed in Section F.3 of the CUDA C Programming Guide, and the throughput of 

these operations on devices of compute capability 2.x is detailed in Section F.4 of the 

programming guide. 

5.1.1 Division and Modulo Operations 

 

 Low Priority: Use shift operations to avoid expensive division and modulo 
calculations. 

Integer division and modulo operations are particularly costly and should be avoided or 

replaced with bitwise operations whenever possible: If n is a power of 2, (i/n) is 

equivalent to (i ≫ log2(n)) and (i % n) is equivalent to (i & (n-1)).  

The compiler will perform these conversions if n is literal. (For further information, refer 

to Chapter 5 of the CUDA C Programming Guide). 
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5.1.2 Reciprocal Square Root 

The reciprocal square root should always be invoked explicitly as rsqrtf() for single 

precision and rsqrt() for double precision. The compiler optimizes 1.0f/sqrtf(x) into 

rsqrtf() only when this does not violate IEEE-754 semantics.  

5.1.3 Other Arithmetic Instructions  

 

 Low Priority: Avoid automatic conversion of doubles to floats.  

The compiler must on occasion insert conversion instructions, introducing additional 

execution cycles. This is the case for 

 Functions operating on char or short whose operands generally need to be converted 

to an int  

 Double-precision floating-point constants (defined without any type suffix) used as 

input to single-precision floating-point computations 

The latter case can be avoided by using single-precision floating-point constants, defined 

with an f suffix such as 3.141592653589793f, 1.0f, 0.5f. This suffix has accuracy 

implications in addition to its ramifications on performance. The effects on accuracy are 

discussed in Chapter 7. Note that this distinction is particularly important to 

performance on devices of compute capability 2.x. 

For single-precision code, use of the float type and the single-precision math functions 

are highly recommended. When compiling for devices without native double-precision 

support such as devices of compute capability 1.2 and earlier, each double-precision 

floating-point variable is converted to single-precision floating-point format (but retains 

its size of 64 bits) and double-precision arithmetic is demoted to single-precision 

arithmetic. 

It should also be noted that the CUDA math library’s complementary error function, 

erfcf(), is particularly fast with full single-precision accuracy. 

5.1.4 Math Libraries 

 

Medium Priority: Use the fast math library whenever speed trumps precision. 

Two types of runtime math operations are supported. They can be distinguished by 

their names: some have names with prepended underscores, whereas others do not (e.g., 

__functionName() versus functionName()). Functions following the __functionName() 

naming convention map directly to the hardware level. They are faster but provide 
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somewhat lower accuracy (e.g., __sinf(x) and __expf(x)). Functions following 

functionName() naming convention are slower but have higher accuracy (e.g., sinf(x) 

and  expf(x)). The throughput of __sinf(x), __cosf(x), and __expf(x) is much greather 

than that of sinf(x), cosf(x), tanf(x). The latter become even more expensive (about 

an order of magnitude slower) if the magnitude of the argument x needs to be reduced. 

Moreover, in such cases, the argument-reduction code uses local memory, which can 

affect performance even more because of the high latency of local memory. More details 

are available in the CUDA C Programming Guide.  

Note also that whenever sine and cosine of the same argument are computed, the 

sincos… family of instructions should be used to optimize performance: 

 sincosf() for single-precision fast math (see next paragraph)  

 sincosf() for regular single-precision 

 sincos() for double precision 

The –use_fast_math compiler option of nvcc coerces every functionName() call to the 

equivalent __functionName() call. This switch should be used whenever accuracy is a 

lesser priority than the performance. This is frequently the case with transcendental 

functions. Note this switch is effective only on single-precision floating point. 

Medium Priority: Prefer faster, more specialized math functions over slower, more 
general ones when possible. 

For small integer powers (e.g., x2 or x3), explicit multiplication is almost certainly faster 

than the use of general exponentiation routines such as pow(). While compiler 

optimization improvements continually seek to narrow this gap, explicit multiplication 

(or the use of an equivalent purpose-built inline function or macro) can have a 

significant advantage. This advantage is increased when several powers of the same 

base are needed (e.g., where both x2 and x5 are calculated in close proximity), as this aids 

the compiler in its common sub-expression elimination (CSE) optimization. 

For exponentiation using base 2 or 10, use the functions exp2() or expf2() and exp10() 

or expf10() rather than the functions pow() or powf(). Both pow() and powf() are heavy-

weight functions in terms of register pressure and instruction count due to the 

numerous special cases arising in general exponentiation and the difficulty of achieving 

good accuracy across the entire ranges of the base and the exponent. The functions 

exp2(), exp2f(), exp10(), and exp10f(), on the other hand, are similar to exp() and 

expf() in terms of performance, and can be as much as ten times faster than their 

pow()/powf() equivalents. 

For exponentiation with an exponent of 1/3, use the cbrt() or cbrtf() function rather 

than the generic exponentiation functions pow() or powf(), as the former are significantly 

faster than the latter. Likewise, for exponentation with an exponent of -1/3, use rcbrt() 

or rcbrtf(). 
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Replace sin(π*<expr>) with sinpi(<expr>) and cos(π*<expr>) with cospi(<expr>). This 

is advantageous with regard to both accuracy and performance. As a particular example, 

to evaluate the sine function in degrees instead of radians, use sinpi(x/180.0). 

Similarly, the single-precision functions sinpif() and cospif() should replace calls to 

sinf() and cosf() when the function argument is of the form π*<expr>. (The 

performance advantage sinpi() has over sin() is due to simplified argument reduction; 

the accuracy advantage is because sinpi() multiplies by π only implicitly, effectively 

using an infinitely precise mathematical π rather than a single- or double-precision 

approximation thereof.) 
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5.2 MEMORY INSTRUCTIONS  

High Priority: Minimize the use of global memory. Prefer shared memory access 
where possible.  

Memory instructions include any instruction that reads from or writes to shared, local, 

or global memory. When accessing uncached local or global memory, there are 400 to 

600 clock cycles of memory latency.  

As an example, the assignment operator in the following sample code has a high 

throughput, but, crucially, there is a latency of 400 to 600 clock cycles to read data from 

global memory: 

__shared__ float shared[32]; 

__device__ float device[32];  

shared[threadIdx.x] = device[threadIdx.x];  

Much of this global memory latency can be hidden by the thread scheduler if there are 

sufficient independent arithmetic instructions that can be issued while waiting for the 

global memory access to complete. However, it is best to avoid accessing global memory 

whenever possible.  
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Chapter 6.  
CONTROL FLOW 

6.1 BRANCHING AND DIVERGENCE 

High Priority: Avoid different execution paths within the same warp. 

Any flow control instruction (if, switch, do, for, while) can significantly affect the 

instruction throughput by causing threads of the same warp to diverge; that is, to follow 

different execution paths. If this happens, the different execution paths must be 

serialized, increasing the total number of instructions executed for this warp. When all 

the different execution paths have completed, the threads converge back to the same 

execution path.  

To obtain best performance in cases where the control flow depends on the thread ID, 

the controlling condition should be written so as to minimize the number of divergent 

warps.  

This is possible because the distribution of the warps across the block is deterministic as 

mentioned in Section 4.1 of the CUDA C Programming Guide. A trivial example is when 

the controlling condition depends only on (threadIdx / WSIZE) where WSIZE is the warp 

size.  

In this case, no warp diverges because the controlling condition is perfectly aligned with 

the warps.  
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6.2 BRANCH PREDICATION 

 Low Priority: Make it easy for the compiler to use branch predication in lieu of 
loops or control statements. 

Sometimes, the compiler may unroll loops or optimize out if or switch statements by 

using branch predication instead. In these cases, no warp can ever diverge. The 

programmer can also control loop unrolling using  

#pragma unroll  

For more information on this pragma, refer to the CUDA C Programming Guide. 

When using branch predication, none of the instructions whose execution depends on 

the controlling condition is skipped. Instead, each such instruction is associated with a 

per-thread condition code or predicate that is set to true or false according to the 

controlling condition. Although each of these instructions is scheduled for execution, 

only the instructions with a true predicate are actually executed. Instructions with a false 

predicate do not write results, and they also do not evaluate addresses or read operands.  

The compiler replaces a branch instruction with predicated instructions only if the 

number of instructions controlled by the branch condition is less than or equal to a 

certain threshold: If the compiler determines that the condition is likely to produce 

many divergent warps, this threshold is 7; otherwise it is 4.  

6.3 LOOP COUNTERS SIGNED VS. UNSIGNED 

Medium Priority: Use signed integers rather than unsigned integers as loop 
counters. 

In the C language standard, unsigned integer overflow semantics are well defined, 

whereas signed integer overflow causes undefined results. Therefore, the compiler can 

optimize more aggressively with signed arithmetic than it can with unsigned arithmetic. 

This is of particular note with loop counters: since it is common for loop counters to 

have values that are always positive, it may be tempting to declare the counters as 

unsigned. For slightly better performance, however, they should instead be declared as 

signed. 

For example, consider the following code: 

for (i = 0; i < n; i++) { 

    out[i] = in[offset + stride*i]; 

} 
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Here, the sub-expression stride*i could overflow a 32-bit integer, so if i is declared as 

unsigned, the overflow semantics prevent the compiler from using some optimizations 

that might otherwise have applied, such as strength reduction. If instead i is declared as 

signed, where the overflow semantics are undefined, the compiler has more leeway to 

use these optimizations. 
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Chapter 7.  
GETTING THE RIGHT ANSWER 

Obtaining the right answer is clearly the principal goal of all computation. On parallel 

systems, it is possible to run into difficulties not typically found in traditional serial-

oriented programming. These include threading issues, unexpected values due to the 

way floating-point values are computed, and challenges arising from differences in the 

way CPU and GPU processors operate. This chapter examines issues that can affect the 

correctness of returned data and points to appropriate solutions. 

7.1 DEBUGGING 

The CUDA debugger, CUDA-GDB, is a valuable debugging tool. It is a port of the GNU 

Debugger version 6.6 and runs on 32-bit and 64-bit Linux. See the CUDA-GDB User 

Manual for more details. 

For Microsoft Windows Vista and 7, the NVIDIA Parallel Nsight debugging and 

profiling tool is available as a free plugin for Microsoft Visual Studio.  See 

http://developer.nvidia.com/object/nsight.html for more details. 

7.2 NUMERICAL ACCURACY AND PRECISION 

Incorrect or unexpected results arise principally from issues of floating-point accuracy 

due to the way floating-point values are computed and stored. The following sections 

explain the principal items of interest. Other peculiarities of floating-point arithmetic are 

presented in Section F.2 of the CUDA C Programming Guide. 

http://developer.nvidia.com/object/nsight.html
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7.2.1 Single vs. Double Precision 

Devices of compute capability 1.3 and higher provide native support for double-

precision floating-point values (that is, values 64 bits wide). Results obtained using 

double-precision arithmetic will frequently differ from the same operation performed 

via single-precision arithmetic due to the greater precision of the former and due to 

rounding issues. Therefore, it is important to be sure to compare like with like and to 

express the results within a certain tolerance rather than expecting them to be exact.  

Whenever doubles are used, use at least the –arch=sm_13 switch on the nvcc command 

line; see Sections 3.1.3 and 3.1.4 of the CUDA C Programming Guide for more details. 

7.2.2 Floating-Point Math Is Not Associative 

Each floating-point arithmetic operation involves a certain amount of rounding. 

Consequently, the order in which arithmetic operations are performed is important. If A, 

B, and C are floating-point values, (A+B)+C is not guaranteed to equal A+(B+C) as it is in 

symbolic math. When you parallelize computations, you potentially change the order of 

operations and therefore the parallel results might not match sequential results. This 

limitation is not specific to CUDA, but an inherent part of parallel computation on 

floating-point values. 

7.2.3 Promotions to Doubles and Truncations to Floats 

When comparing the results of computations of float variables between the host and 

device, make sure that promotions to double precision on the host do not account for 

different numerical results. For example, if the code segment 

float a; 

… 

a = a*1.02; 

were performed on a device of compute capability 1.2 or less, or on a device with 

compute capability 1.3 but compiled without enabling double precision (as mentioned 

above), then the multiplication would be performed in single precision. However, if the 

code were performed on the host, the literal 1.02 would be interpreted as a double-

precision quantity and a would be promoted to a double, the multiplication would be 

performed in double precision, and the result would be truncated to a float—thereby 

yielding a slightly different result. If, however, the literal 1.02 were replaced with 1.02f, 

the result would be the same in all cases because no promotion to doubles would occur. 

To ensure that computations use single-precision arithmetic, always use float literals. 

In addition to accuracy, the conversion between doubles and floats (and vice versa) has 

a detrimental effect on performance, as discussed in Chapter 5. 
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7.2.4 IEEE 754 Compliance 

All CUDA compute devices follow the IEEE 754 standard for binary floating-point 

representation, with some small exceptions. These exceptions, which are detailed in 

Section F.2 of the CUDA C Programming Guide, can lead to results that differ from IEEE 

754 values computed on the host system. 

One of the key differences is the fused multiply-add (FMAD) instruction, which 

combines multiply-add operations into a single instruction execution and truncates the 

intermediate result of the multiplication. Its result will differ at times from results 

obtained by doing the two operations separately. 

7.2.5 x86 80-bit Computations 

x86 processors can use an 80-bit “double extended precision” math when performing 

floating-point calculations. The results of these calculations can frequently differ from 

pure 64-bit operations performed on the CUDA device. To get a closer match between 

values, set the x86 host processor to use regular double or single precision (64 bits and 

32 bits, respectively). This is done with the FLDCW assembly instruction or the equivalent 

operating system API. 

 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.0  |  61 

Chapter 8.  
MULTI-GPU PROGRAMMING 

8.1 INTRODUCTION TO MULTI-GPU 

Programming a multi-GPU application is no different from programming an application 

to utilize multiple cores or sockets because CUDA is completely orthogonal to CPU 

thread management or message passing APIs.  The only new concept is selecting the 

correct GPU, which in most cases is an available GPU (one without an existing context).  

In fact, GPU acceleration can be added straightforwardly to existing multi-threaded 

CPU code, whether it uses lightweight or heavyweight threads – all one has to do is port 

the compute-intensive portions of the code to GPU and add calls to transfer data 

between CPU and GPU, leaving the inter-CPU-thread communication code unchanged. 

8.2 MULTI-GPU PROGRAMMING 

In order to issue work to a GPU, a context (view of a GPU) is established between a CPU 

thread (or group of threads) and the GPU.  The context contains all of the driver state 

that refers to that GPU – the virtual address space, streams, events, allocated blocks of 

memory, etc.  Only one context can be active on a GPU at any particular instant; 

similarly, a CPU thread can execute commands (perform memory allocations, launch 

kernels, etc.) in only one context at any particular instant. 

A context is established automatically by the CUDA Runtime during the program’s first 

call to a function that changes state (such as cudaMalloc(), etc.), so one can force the 

creation of a context by calling cudaFree(0).  Note that a context is created on GPU 0 by 

default, unless another GPU is selected explicitly prior to context creation with a 

cudaSetDevice() call.  The context is destroyed either by calling cudaDeviceReset()or 

when the controlling CPU process exits. 
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In order to issue work to p GPUs concurrently, a program can either use p CPU threads, 

each with its own context, or it can use one CPU thread that swaps among several 

contexts, or some combination thereof.  CPU threads can be lightweight (pthreads, 

OpenMP, etc.) or heavyweight (MPI).  Note that any CPU multi-threading or message-

passing API or library can be used, as CPU thread management is completely 

orthogonal to CUDA.  For example, one can add GPU processing to an existing MPI 

application by porting the compute-intensive portions of the code without changing the 

communication structure. 

Even though a GPU can execute calls from one context at a time, it can belong to 

multiple contexts.  For example, it is possible for several CPU threads to establish 

separate contexts with the same GPU (though multiple CPU threads within the same 

process accessing the same GPU would normally share the same context by default).  

The CUDA driver manages the GPU’s switching among those contexts (switching to the 

next waiting context whenever the GPU goes idle) as well as partitioning memory 

among the contexts (GPU memory allocated in one context cannot be accessed from 

another context since the allocations are in separate virtual address spaces). 

8.3 SELECTING A GPU 

In many cases, the intent is for each CPU thread to control a different GPU.  Achieving 

this is straightforward if a program spawns as many lightweight threads as there are 

GPUs – one can derive GPU index from thread ID.  For example, OpenMP thread ID can 

be readily used to select GPUs. 

MPI rank can be used to choose a GPU reliably as long as all MPI processes are launched 

on a single host node.  However, when MPI processes are launched across several 

cluster nodes, the assignment of processes to host nodes depends on the MPI 

implementation and launch configuration (hostfile), preventing reliable selection of a 

unique GPU.  To address this issue, one could implement a negotiation protocol among 

MPI processes running on the same host (using MPI_Get_processor_name() call), so that 

each one claims a unique GPU.  A less robust option is for the GPU selection to rely on a 

specific allocation MPI processes to nodes (for example, allocating consecutive processes 

to the same node). 

Starting with CUDA 2.2, Linux drivers provide an alternative and much simpler way to 

ensure that each GPU is assigned to at most one context – the administrator can select 

exclusive mode via the SMI (System Management Interface) tool that comes with the 

driver.  In exclusive mode, if the application does not specify a GPU with a 

cudaSetDevice() call, the context is no longer created on GPU 0, but on a GPU without 

an active context.  If there are no available GPUs, or if cudaSetDevice() specifies a GPU 

already having an active context, the first CUDA call that attempts to change the device 

state will fail and return an error. 
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8.4 INTER-GPU COMMUNICATION 

All inter-GPU communication takes place via host nodes.  GPU and the controlling CPU 

thread communicate via memcopies, while CPU threads exchange data using the same 

methods as applications not accelerated with GPUs.  Thus, best performance is achieved 

when one follows best practices for the CPU-GPU communication as well as CPU-CPU 

communication.  Note that the two are independent and orthogonal. 

Communication between CPU and GPU is most efficient when using pinned memory on 

the CPU.  Pinned memory enables asynchronous memory copies (allowing for overlap 

with both CPU and GPU execution), as well as improves PCIe throughput on FSB 

systems.  Please refer to the CUDA C Programming Guide for more details and examples 

of pinned memory usage. 

Lightweight CPU threads exchange data most efficiently via shared memory.  Note that 

in order for a pinned memory region to be viewed as pinned by CPU threads other than 

the one that allocated it, one must call cudaHostAlloc() with the cudaHostAllocPortable 

flag.  A common communication pattern will be for one CPU thread to copy data from 

its GPU to a shared host memory region, after which another CPU thread will copy the 

data to its GPU.  Users of NUMA systems will have to follow the same best practices as 

for communication between non-GPU accelerated CPU threads. 

Communication between heavy-weight processes takes place via message passing, for 

example MPI.  Once data has been copied from GPU to CPU it is transferred to another 

process by calling one of the MPI functions.  For example, one possible pattern when 

exchanging data between two GPUs is for a CPU thread to call a device-to-host 

cudaMemcpy(), then MPI_Sendrecv(), then a host-to-device cudaMemcpy().  Note that 

performance of the MPI function is not dependent on the fact that data originated at or is 

destined for a GPU.  Since MPI provides several variations for most of its 

communication functions, the choice of a function should be dictated by the best 

practices guide for the MPI implementation as well as the system and network. 

8.5 COMPILING MULTI-GPU APPLICATIONS 

Code that includes GPU kernels or CUDA runtime kernel launch syntax must be 

compiled with nvcc, the compiler driver.  nvcc invokes either gcc (on Linux) or Microsoft 

Visual C++ compiler (on Windows) for non-GPU code.  One can pass options to the host 

C/C++ compiler through nvcc by using –Xcompiler option (for more details please refer 

to nvcc documentation included in the CUDA toolkit).  For example, one would specify 

nvcc –Xcompiler /openmp in order to pass the -fopenmp option to the host gcc compiler 

(the same option for MSVC compiler is /openmp). 
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MPI applications are typically compiled using mpicc, the MPI compiler driver.  While it 

is possible to pass all the necessary flags through nvcc, it is often simpler to compile MPI 

code and CUDA kernel code into separate object files.  This approach also fits many 

larger projects well, since they separate the communication and computation source 

code already. 

8.6 INFINIBAND 

NVIDIA GPUDirect™ technology allows the sharing of CUDA pinned host memory 

with other devices. This allows accelerated transfers of GPU data to other devices, such 

as supported Infiniband network adapters. If GPUDirect support is not available for 

your network device, network transfer throughput can be reduced. A possible 

workaround is to disable RDMA. For the OpenMPI implementation, this can be 

achieved by passing the flag –mca btl_openib_flags 1 to mpirun. 
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Appendix A.  
RECOMMENDATIONS AND BEST PRACTICES 

This appendix contains a list of all the recommendations for optimization and the list of 

best practices that are explained in this document.  

A.1 Overall Performance Optimization 
Strategies 

Performance optimization revolves around three basic strategies:  

 Maximizing parallel execution  

 Optimizing memory usage to achieve maximum memory bandwidth  

 Optimizing instruction usage to achieve maximum instruction throughput 

Maximizing parallel execution starts with structuring the algorithm in a way that 

exposes as much data parallelism as possible. Once the parallelism of the algorithm has 

been exposed, it needs to be mapped to the hardware as efficiently as possible. This is 

done by carefully choosing the execution configuration of each kernel launch. The 

application should also maximize parallel execution at a higher level by explicitly 

exposing concurrent execution on the device through streams, as well as maximizing 

concurrent execution between the host and the device.  

Optimizing memory usage starts with minimizing data transfers between the host and 

the device because those transfers have much lower bandwidth than internal device data 

transfers. Kernel access to global memory also should be minimized by maximizing the 

use of shared memory on the device. Sometimes, the best optimization might even be to 

avoid any data transfer in the first place by simply recomputing the data whenever it is 

needed.  
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The effective bandwidth can vary by an order of magnitude depending on the access 

pattern for each type of memory. The next step in optimizing memory usage is therefore 

to organize memory accesses according to the optimal memory access patterns. This 

optimization is especially important for global memory accesses, because latency of 

access costs hundreds of clock cycles. Shared memory accesses, in counterpoint, are 

usually worth optimizing only when there exists a high degree of bank conflicts.  

As for optimizing instruction usage, the use of arithmetic instructions that have low 

throughput should be avoided. This suggests trading precision for speed when it does 

not affect the end result, such as using intrinsics instead of regular functions or single 

precision instead of double precision. Finally, particular attention must be paid to 

control flow instructions due to the SIMT (single instruction multiple thread) nature of 

the device. 

A.2 High-Priority Recommendations 

 To get the maximum benefit from CUDA, focus first on finding ways to parallelize 

sequential code. (Section 0) 

 Use the effective bandwidth of your computation as a metric when measuring 

performance and optimization benefits. (Section 2.2) 

 Minimize data transfer between the host and the device, even if it means running 

some kernels on the device that do not show performance gains when compared with 

running them on the host CPU. (Section 3.1) 

 Ensure global memory accesses are coalesced whenever possible. (Section 3.2.1) 

 Minimize the use of global memory. Prefer shared memory access where possible. 

(Section 5.2) 

 Avoid different execution paths within the same warp. (Section 6.1) 

A.3 Medium-Priority Recommendations 

 Accesses to shared memory should be designed to avoid serializing requests due to 

bank conflicts. (Section 3.2.2.1) 

 Use shared memory to avoid redundant transfers from global memory. (Section 

3.2.2.2) 

 To hide latency arising from register dependencies, maintain sufficient numbers of 

active threads per multiprocessor (i.e., sufficient occupancy). (Sections 3.2.6 and 4.3) 

 The number of threads per block should be a multiple of 32 threads, because this 

provides optimal computing efficiency and facilitates coalescing. (Section 4.4) 

 Use the fast math library whenever speed trumps precision. (Section 5.1.4) 
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 Prefer faster, more specialized math functions over slower, more general ones when 

possible. (Section 5.1.4) 

 Use signed integers rather than unsigned integers as loop counters. (Section 6.3) 

A.4 Low-Priority Recommendations 

 On version 2.2 of the CUDA Toolkit (and later), use zero-copy operations on 

integrated GPUs. (Section 3.1.3) 

 For kernels with long argument lists, place some arguments into constant memory to 

save shared memory. (Section 3.2.2.4) 

 Use shift operations to avoid expensive division and modulo calculations. (Section 

5.1.1) 

 Avoid automatic conversion of doubles to floats. (Section 5.1.3) 

 Make it easy for the compiler to use branch predication in lieu of loops or control 

statements. (Section 6.2) 
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Appendix B.  
NVCC COMPILER SWITCHES 

B.1 NVCC 

The NVIDIA  nvcc compiler driver converts .cu files into C for the host system and 

CUDA assembly or binary instructions for the device. It supports a spate of switches, of 

which the following are especially useful for optimization and related best practices: 

 -arch=sm_13 or higher is required for double precision. See Section 7.2.1. 

 –maxrregcount=N specifies the maximum number of registers kernels can use at a per-

file level. See Section 3.2.6.1. (See also the __launch_bounds__ qualifier discussed in 

Section B.17 of the CUDA C Programming Guide to control the number of registers 

used on a per-kernel basis.) 

 --ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and constant 

memory usage. 

 –use_fast_math compiler option of nvcc coerces every functionName() call to the 

equivalent __functionName() call. This makes the code run faster at the cost of slightly 

diminished precision and accuracy. See Section 5.1.4. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.0  |  69 

Appendix C.  
REVISION HISTORY 

C.1 Version 3.0 

 Added compute capability 2.0. 

 Devices of compute capability 2.0 have an L1 cache of configurable size for global and local 
memory (see Section F.4.1 of the CUDA C Programming Guide). Note that the L1 cache has higher 
bandwidth than the texture cache and therefore obviates some of the benefits of texture fetch 
seen in devices of compute capability 1.x. See Section 3.2.4.1. 

 Removed references to device emulation mode, which is deprecated in CUDA Toolkit 3.0 and 
will be removed in CUDA Toolkit 3.1. 

 The CUFFT and CUBLAS libraries can now interoperate with applications that use the Driver 
API. 

 Added a recommendation for the use of exp2() or exp10() in preference to pow() to Section 

5.1.4. 

 The __launch_bounds__ kernel definition qualifier can now be used to control register 

usage on a per-kernel basis (in contrast to the -maxrregcount command-line option of 

nvcc, which controls this on a per-file basis).  See Section 3.2.6.1 of this guide and 

Section B.17 of the CUDA C Programming Guide. 

 Note importance of distinguishing single-precision floating-point constants and 

arithmetic from double-precision constants and arithmetic for performance on 

devices of compute capability 2.0 in Section 5.1.3. 

 Devices of compute capability 2.0 can multicast shared memory accesses in addition 

to the broadcast mechanism in devices of compute capability 1.x. 

 Added Chapter 8 on multi-GPU programming. 
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C.2 Version 3.1 

 Added Section 3.3 on memory allocation. 

 Added fourth bullet to rules of thumb for block size selection in Section 4.4. 

 Added Section 6.3 on signed versus unsigned loop counters. 

C.3 Version 3.2 

 CUdeviceptr is now a 64-bit value in 64-bit applications, so it is no longer necessary to 

cast CUdeviceptr values with (void*)(size_t) when passing them as arguments to 

kernels using the CUDA Driver API; this casting is now effectively a no-op.  As such, 

the type casts have been removed from the example code in Section 1.3.4. 

 Corrected discussion in Section 3.2.6 of the necessary numbers of active threads per 

multiprocessor to hide latency on devices of compute capability 2.0. 

C.4 Version 4.0 

 Added recommendation for the use of explicit multiplication in place of pow() for 

small integer powers in Section 5.1.4. 

 Added recommendations for the use (when applicable) of sinpi(), cospi(), cbrt(), 

and rcbrt() in Section 5.1.4. 

 Modified API recommendation in Section 1.3: most applications should now prefer 

the CUDA Runtime API over the CUDA Driver API. 

 Revised Chapter 8 to better reflect the multi-GPU features of CUDA Toolkit 4.0. 

 Minor clarifications. 
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