
Dynamic Programming with CUDA — Part I
Assessment

Robert Hochberg

August 21, 2012



Assessment of Student Knowledge

1. Understanding of the Algorithm: A student who can answer the Theory,
Speedup Considerations and The Actual Shortest Path questions below,
has likely understood the Floyd-Warshall algorithm and the basics of parallel
programming. No CUDA knowledge could be inferred, though.

2. Understanding of CUDA: Students who can compile and run the sample
code, and answer the __syncthreads() and Jumps in the Green Graph
questions has likely understood the CUDA programming model, particularly
the important notions of warps, blocks and the memory model. No working
knowledge or programming skills could be inferred, though.

3. Comfort with the Environment: Students who can work through Is CUDA
Worth the Trouble?, generating numerical comparison data and finding
where the running times of the linear and parallel algorithms are about the
same, demonstrate comfort with the compile/run process and generating test
graphs.

4. CUDA Mastery: Students who can solve the cudaMallocPitch: and/or
Columns Instead of Rows problems have likely gained enough skill to begin
writing programs from scratch in the CUDA environment in a way that takes
advantage of its capabilities.

Solutions

1. Theory: The blocks of threads in the kernel are required to be independent.
That is, the program must produce the correct result regardless of the order in
which the blocks are scheduled. But consider the kth row and column of the
matrix. Every entry (i, j) of the matrix is looking at entries (i, k) and (k, j)
when doing its update. But these three entries may be in entirely different
thread blocks, and so the order in which they are processed might make a
difference in the final outcome. Show that it does not.

1



Consider an entry (k, j) in the kth row of Mk−1. When its thread consid-
ers updating that entry for matrix Mk it checks the inequality dk−1(k, j) <
dk−1(k, j) + dk−1(j, k), which of course will never be satisfied. Thus entries in
the kth row will not change on the kth iteration of the algorithm, that is, when
computing Mk. Same for the entries in the kth column. Thus whether these
blocks are computed before or after any other blocks is irrelevant.

2. __syncthreads(): The kernel function in fw.c contains a single __syncthreads()
call. Experiment to see whether this call is really necessary. Then explain how
the wrong answer could be arrived at without this call.

Yes, disaster could result without this synchronization call. The shared variable
trkc needs to be read before any thread is allowed to use it. Since only the
first thread in the block reads this value from global memory, it is possible that
threads from other warps may dash ahead while the first thread is still waiting
for this value, and if they do, they will compute using the wrong value for trkc.

3. cudaMallocPitch: CUDA provides a more natural mechanism for allocating a
two-dimensional array; the cudaMallocPitch command. (See Section 5.3.2.1.2
of the CUDA C Programming Guide.) Re-write the code using this method
instead of making use of our ALIGNMENT and Na variables. See if there is any
improvement in the running time.

Code for this is given in the files fwPitch.c, fwHelpersPitch.cpp and
fwHelpersPitch.h. Use make -f Makefile-assess fwPitch to generate the
executable fwPitch which can be used for testing.

4. Columns Instead of Rows: Re-write the code using blocks of threads that
are columns instead of rows, and compare the running time with the current,
row-based blocks.

Code for this is given in the files fwCols.c and fwHelpersCols.cpp, Use make

-f Makefile-assess fwCols to generate the executable fwCols which can be
used for testing.

5. Is CUDA Worth the Trouble? You can substitute the following lines of
code for main() in fw.c,

2



int main(int argc, char* argv[]){

int N = 0;

int Na = 0;

int* graph = readGraph(N, Na, argv[1]);

printf("Read %s with %d vertices, Na = %d\n", argv[1], N, Na);

printArray(N, graph);

for(int k = 0; k < N; k++)

for(int i = 0; i < N; i++)

if(graph[i*N + k] != INT_MAX)

for(int j = 0; j < N; j++)

if(graph[k*N + j] != INT_MAX)

if(graph[i*N + k] + graph[k*N + j] < graph[i*N + j])

graph[i*N + j] = graph[i*N + k] + graph[k*N + j];

printArray(N, graph);

}

and change the line in fwHelpers.cpp

Na = alignment*((N + alignment-1)/alignment);

to

Na = N;

and have a single-processor, non-parallel version of the Floyd-Warshall algo-
rithm. (This is the typical implementation.) Compare these running times
against the CUDA-based solutions. At what point is it worth it to launch a
CUDA kernel to do the work? Is it ever really worth it?

On my MacBook Pro (compute capability 1.2) the running times are about equal
for graphs on 600 vertices. For smaller graphs, the non-parallel version runs
quicker. Much quicker for very small graphs. But is it ever worth it? Yes. Even
for a graph with only 1000 vertices, the running time is about 4 seconds for the
non-parallel version, and about 2 seconds for the CUDA-enabled version. For
2000 vertices, those times are 36 seconds vs. 9 seconds. (Times are wall times,
and include all memory transfers to and from the device.)

6. Speedup Considerations: Suppose that we have the very latest system with

3



K CUDA-enabled cards, each with M multi-processors, each of which has C
cores. On this system we run the algorithm described in this module on graphs
with n vertices. As n gets large, what function describes the growth of the
running time T (n) for solving the problem on n vertices? For example, would
you say it grows linearly (T (n) = O(n))? quadratically (T (n) = O(n2))?
exponentially (T (n) = O(2n))?

The algorithm we are using here is still the Floyd-Warshall algorithm, with its
triply nested loops. It therefore has running time O(n3). All we are doing with
CUDA is decreasing the constant in front of the n3 term. This is a fundamental
fact about parallelizing algorithms: If you have a fixed-size computing device,
then regardless of how well it computes in parallel, it can’t decrease the running
time for larger and larger problems by more than a constant factor. The good
news is that that factor gets larger and larger every year as machines get better
and better.

7. Jumps in the Green Graph: The green plot in the run-times Figure seems to
take a leap upward with some regularity. Explain why this might be happening.
(Another question might be to ask why we don’t see this happen in the other
four curves. I don’t know the answer to that question.)

The jumps happen at the multiples of 256, which is the size of our thread blocks.
When the matrix has width 1024, for example, we need four thread blocks to
cover a row. When the width increases to 1025, we add a fifth thread block for
each row. Thus the total number of thread blocks, which had been going up by
4 each time a new vertex was added, suddenly jumps by 1029. So even though
most of the threads in the blocks overhanging the right edges of the matrix will
exit immediately, they still have to be created and run, giving us these large
jumps at the multiples of 256.

8. The Actual Shortest Path: The code currently produces a matrix whose
(i, j)-entry is the length of the shortest path from vertex i to vertex j. Modify
the code so that the program produces another matrix whose (i, j)-entry is the
vertex you should step to from vertex i if you are traveling along a shortest
path from vertex i to vertex j. For example, the (A,G)-entry in the graph of
Figure 1.1 would be “C”. Then show how to use this matrix to build the whole
path from i to j.

4



Suppose that we have created a new matrix devPathArray to hold these steps.
Then we can change the lines:

if(betterMaybe < devArray[arrayIndex])

devArray[arrayIndex] = betterMaybe;

to:

if(betterMaybe < devArray[arrayIndex]){

devArray[arrayIndex] = betterMaybe;

devPathArray[arrayIndex] = k;

}

The array devPathArray should be initialized so that its (i, j)-entry is j for all i
and j.
To read the shortest path from vertex i to vertex j after the algorithm has run,
first print out vertex i, and set variable k equal to i. Thereafter, print out the
(k, j)-entry of the matrix, and then set k equal to this entry, finishing when k is
equal to j.

5


