
Dynamic Programming with CUDA — Part II
Assessment

Robert Hochberg

November 10, 2012

Assessment of Student Knowledge

1. Competency with editing, compiling and running programs Students
who complete The Euler-Mascheroni Constant and Compiling with Dou-
bles can be assumed to have mastered the basic development cycle. But no
deep knowledge of CUDA programming could be inferred.

2. Understanding of Lookback Doubling: A student who can answer the
Binary Addition problem has mastered the technique of look-back doubling.

3. Ability to Program in CUDA: Students who can compile and run the sam-
ple code, and answer the Integer Exploration question has likely understood
the CUDA programming model, and has shown the ability to write a kernel
and perform memory transfers from the card.

4. CUDA Mastery: Students who can solve the Binary Addition and the
CUDA Global Memory problems have likely gained enough skill to begin
writing programs from scratch in the CUDA environment in a way that takes
advantage of its capabilities.

1

Some Solutions

1. Exercise. Suppose the threads in a kernel use 8 bytes of shared memory
each, and the system requires 12 bytes per block of threads. If you are going
to be running on a GeForce GTX 260, then what would be a good number
of threads per block for this kernel? (See Appendices A and F of the Cuda
C Programming Guide [2].) Repeat the calculation if instead of 8 bytes per
thread we need 48 bytes per thread.

The GeForce GTX 260 is of compute capability 1.3 (Appendix A) and so has
16KB of shared memory per block (Appendix F). In the first, 8 bytes per thread,
case, there is enough shared memory for (16384 − 12)/8 = 2046 threads per
block. But the maximum number of threads per block for a device of compute
capability 1.3 is 512 (Appendix F). So that would be a good number to use. If
each thread needs 48 bytes of memory, then we have enough space for (16384−
12)/48 = 341 threads per block. So that might be a good number to use, but it
would be worth checking experimentally whether using the next-smaller multiple
of 32, that is, 320 threads per block might be better. (See the end of section 5.2
of the CUDA C Programming Guide.)

2. Exercise. The program below is included with this module: exercise.cu.
(Some non-essential lines have been deleted to make it fit on the page. The
included file has everything needed to compile.) It can be compiled with nvcc

exercise.cu and run with ./a.out. Before running the program, decide what
the program does, and then check your answer by running it.

The program copies a 4 × 4 matrix up to the CUDA device, squares it, and
then copies it back to the host. Each thread on the device is responsible for
1. Loading one entry from global memory into shared memory, 2. computing
one entry in the square of the matrix, and 3. saving the result back to global
memory.

2

typedef struct{
int a[4][4];

} Matrix;

__global__ void compute(Matrix* mIn, Matrix* mOut){
__shared__ Matrix m1;

int row = threadIdx.x / 4;

int col = threadIdx.x % 4;

m1.a[row][col] = (*mIn).a[row][col];

int i; /* counter */

int sum = 0;

for(i = 0; i < 4; i++)

sum += m1.a[row][i] * m1.a[i][col];

(*mOut).a[row][col] = sum;

}

int main(void){
int i, j; /* counters */

Matrix *m1, *m2;

m1 = (Matrix*)malloc(sizeof(Matrix));

for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)

(*m1).a[i][j] = random() % 10;

Matrix *mDevIn, *mDevOut;

cudaError_t err = cudaMalloc(&mDevIn, sizeof(Matrix));

err = cudaMalloc(&mDevOut, sizeof(Matrix));

err = cudaMemcpy(mDevIn, m1, sizeof(Matrix), cudaMemcpyHostToDevice);

compute <<< 1, 16 >>> (mDevIn, mDevOut);

m2 = (Matrix*)malloc(sizeof(Matrix));

err = cudaMemcpy(m2, mDevOut, sizeof(Matrix), cudaMemcpyDeviceToHost);

}

3

3. The Euler-Mascheroni Constant. Let’s do a quick warm-up. The sum
1+1/2+1/3+1/4+1/5+ · · ·+1/n is approximately equal to lnn, the natural
log of n. As n gets large, the difference between the sum and lnn approaches
the Euler-Mascheroni constant γ, which is about 0.5772156649. We will use
our recurrence to evaluate the sum, which we will then compare to the natural
log.

Consider the file recursion.c. Lines 305-311 in main() set up the recurrence:

// Set up the initial values {a[-2], a[-1], a[0], 1}
float myInit[] = {1.0, 0.0, 0.0, 1.0};
cudaMemcpyToSymbol(init, myInit, 4*sizeof(float));

// Set up the initial recursion {c1, c2, c3, d}
float myRec[] = {1.0, 0.0, 0.0, 1.0};
cudaMemcpyToSymbol(rec, myRec, 4*sizeof(float));

The initialization given above corresponds to the recurrence ai = ai−1 + 1.
This is saved in __constant__ memory, as indicated by cudaMemcpyToSymbol.
Since about 8192 bytes of constant memory can be cached, all threads will have
fast access to this recurrence. (See Section 5.3.2.4 of the Cuda C Programming
Guide [2] for more on constant memory.) The program as provided with this
module has “rule[threadIdx.x].a[3][0] = (float)1.0/idx;” on line 147.
This gives each thread its own value for “d” so that the recursion rule is ai =
ai−1 + 1/i. (Note that if the recursion depends on i, then we must allow each
thread to build its own rule, using its own index. This takes place in the
initializeRules() kernel function.) Compile the program recursion.cu as
follows:

nvcc -o recur -DNUMELTS=1000 -DthreadsPerBlock=255 recursion.cu

(The -D options #define the number of elements to inspect (NUMELTS) to be
a thousand, and to use 255 threads per block.) Then type ./recur to run the
program.

You should see a printout of the first 1000 partial sums: 0, 1, 1.5, 1.83333,
2.083333, The last value is 1 + 1/2 + 1/3 + · · · + 1/999 which should be
about ln 999. Compare this with the actual value of ln 999 to get our first
estimate of the Euler-Mascheroni constant. Experiment by re-compiling with
more elements, and seeing how far you can push this approximation. Note that

4

you may want to modify the printout() function to reduce output.

The included file “em.cu” contains a solution to this problem.

4. Compiling with Doubles. In a real scientific application where more preci-
sion was needed than 32-bit floats could provide, doubles (64 bits) or perhaps
arbitrary precision numbers would be used. Unfortunately, devices of compute
capability 1.2 or lower do not support native doubles. Included with this mod-
ule is a file recursionDouble.cu which, if compiled with the -arch=sm_13

flag (see Section 3.1.3 of the CUDA C Programming Guide) will use doubles
instead of floats (but only on devices of compute capability at least 1.3) to
compute the Euler-Mascheroni constant.

(a) How many threads per block are you able to have now?

(b) If you run the code, do the partial sums look any more accurate when
doubles are used than when floats are used?

(c) One thing often overlooked is the error that creeps in whenever we use
computers to do arithmetic on real numbers, such as 1/3 or π. Replace
line 147 of recursionDouble.cu to read

rule[threadIdx.x].a[3][0] = abs(1-((double)1.0/idx)*idx);

All of these values are “mathematically” equal to 0, but if we add them all
up (as we added 1/i in the previous problem) you can see how the error
accumulates. Compile recursionDouble.cu without the -arch=sm_13

flag to force it to use floats, and see how large the error is when adding
1000 elements.

(d) How would you expect things to turn out if we used doubles instead of
floats? Repeat the exercise with recursionDouble.cu, compiled with
the -arch=sm_13 flag, to see if your intuition is correct. (Of course, this
assumes that you have a device of compute capability at least 1.3 on which
to try this.)

(e) Finally, repeat Problem 1 using recursionDouble.cu. Do you notice any
difference in your approximations of γ?

5. Integer Exploration. If we tried to compute the Fibonacci numbers with
floats, or even doubles, we would not be able to get very far. Computation
with doubles fails to get the exact value before even the 100th term, and a

5

double can’t even hold the 1500th term because it exceeds the maximum size
of a double.

The program recursionInt.cu uses ints instead of floats or doubles, and
makes use of a MOD macro which can be defined at compile time. The program
will then compute all values modulo MOD, which no value will ever exceed.
Modular arithmetic is such that if we are computing only sums and products,
then we may reduce modulo MOD as often as we wish during our computation,
and our end result will be the same. This conveniently allows us not to have
to otherwise modify our algorithm. If we compile the program to run mod 7:

nvcc -DMOD=7 -DNUMELTS=100 -o recurInt recursionInt.cu

then we can see the first 100 terms of the Fibonacci sequence mod 7. The
sequence begins: 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3,
Notice that it repeats after the first 16 terms, so that the sequence will be
periodic with period 16.

(a) After the while loop in main has ended, all of the threads have computed
their values, and they are sitting in global memory, in an array of Rule
structures pointed to by devRules. Write a new kernel (__global__)
function that can be called at this point that will inspect these values
and find the period. This can always be determined by finding the first
re-ocurrence of the consecutive values “0, 1”. This is included with the
module as fib.cu. It will also print out all 100000 elements, but you can
change the “printout” function in fib.cu to do this differently. The reason
for the “arch” flag is that the code uses an atomicMin function which
is not available on devices of compute capability less than 1.1, so we tell
the compiler that we’ll be on compute capability at least 1.1. If you’re
on higher compute capability, you can use arch=sm_12, etc... to let the
compiler know. Note that this code will not run on devices of compute
capability 1.0.

The way this code works is that we create a thread for each element, and
each thread checks to see if its own element has value “0” while the element
to its right has value “1.” Each thread block has 512 threads, but only the
first 511 threads in each block perform this check. The 512th thread is
simply in charge of reading a value from the array in global memory into
shared memory, so that the 511th thread has access to it.

(b) As part of the preceding problem, you need to devise a way to get a value

6

(the period) off of the device. How did you solve this problem? In our
code, we created a variable int hostPeriod which resided on the host, and
a variable int devPeriod which resided on the device via cudaMalloc.
We used cudaMemcpy to read the period off of the device after it had been
computed.

(c) Another problem is that you may have many blocks all trying to shove
an answer into the same location in memory, if they have discovered an
occurrence of “0, 1” in the devRules array. But only the first occurrence
should be returned. How did you solve this problem? This code uses
atomicMin to solve this problem. For this reason, however, the code does
not run on devices of compute capability 1.0.

(d) The period of the Fibonacci numbers mod 49 is 112. It seems that for all
primes p, the period of the Fibonacci numbers mod p2 is strictly greater
than the period mod p. Nobody knows if this is the case for all primes,
though. Check it out for some primes on your own, and see if you can
find a counter-example. If you do, make sure you show a number theorist
at your school, because everyone’s wondering if there is such a counter-
example.

Here are the periods for all primes less than 100 and their squares. The
file fibRep.cu and the script manyFib can be used to explore this question,
by typing ./manyFib

7

Prime p period mod p period mod p2

2 3 6
3 8 24
5 20 100
7 16 112
11 10 110
13 28 364
17 36 612
19 18 342
23 48 1104
29 14 406
31 30 930
37 76 2812
41 40 1640
43 88 3784
47 96 1504
53 108 5724
59 58 3422
61 60 3660
67 136 9112
71 70 4970
73 148 10804
79 78 6162
83 168 13944
89 44 3916
97 196 19012

(e) Try some experiments with a modified Fibonacci recurrence, such as ai =
ai−1 + ai−2 + 1. What is the period of this sequence mod p for the primes
under 50?

Here is a table of the periods mod x, for all x from 2 to 99, and their
squares. Notice that the periods for prime values and their squares don’t
change! The code for this problem can be found in fibRepPlus1.cu, and
can be run explored with the shell script manyFibPlus1. Note that the
shell script may need to be made executable by the user:
chmod u+x ./manyFibPlus1

8

period period
x mod x mod x2

2 3 6
3 8 24
4 6 24
5 20 100
6 24 24
7 16 112
8 12 384
9 24 216
10 60 300
11 10 110
12 24 24
13 28 364
14 48 336
15 40 600
16 24 768
17 36 612
18 24 216
19 18 342
20 60 600
21 16 336
22 30 330
23 48 1104
24 24 192
25 100 2500
26 84 1092
27 32 1944
28 48 336
29 14 406
30 120 600
31 30 930
32 48 1536
33 40 1320
34 36 612

period period
x mod x mod x2

35 80 2800
36 24 216
37 76 2812
38 18 342
39 56 2184
40 60 2400
41 40 1640
42 48 336
43 88 3784
44 30 1320
45 120 5400
46 48 1104
47 64 1504
48 24 384
49 112 5488
50 300 7500
51 72 1224
52 84 2184
53 108 5724
54 72 1944
55 20 1100
56 48 672
57 72 1368
58 42 1218
59 58 3422
60 120 600
61 60 3660
62 30 930
63 48 3024
64 288 6144
65 140 9100
66 120 1320
67 136 9112

period period
x mod x mod x2

68 36 1224
69 48 1104
70 240 8400
71 70 4970
72 24 864
73 148 10804
74 228 8436
75 200 15000
76 18 1368
77 80 6160
78 168 2184
79 78 6162
80 120 9600
81 216 17496
82 120 4920
83 168 13944
84 48 336
85 180 15300
86 264 11352
87 56 4872
88 60 5280
89 44 3916
90 120 5400
91 112 1456
92 48 1104
93 120 3720
94 96 4512
95 180 17100
96 48 1536
97 196 19012
98 336 16464
99 120 11880

100 300 15000

9

(f) Finally, answer the same question for the recurrence ai = ai−1 + ai−2,
where a0 = 1 and a1 = 1. Is anything periodic here?

This question is much more interesting, because you can’t simply search for
a repeat of “1, 1” to find the period. For example, the sequence generated
mod 5 begins: 1, 1, 4, 3, 1, 4, 1, 2, 1, 2, 3, 1, 1, 0, 0, 0, 1, 3, 2,
Notice that the first re-occurrence of “1, 1” is followed by a “0”, not a “4”.
Eventually there is another “1, 1, 4” in this sequence, and that is where
you can determine the period. In the provided code, fibRepPlusi.cu,
the kernel function findPeriod() contains this test for discovery of the
period:

if(threadIdx.x < blockDim.x - 1 && idx > 1

&& fibValues[threadIdx.x] == init[2]

&& fibValues[threadIdx.x + 1] == init[2] + init[1] + 1

&& (idx % MOD) == 0)

By checking that idx% MOD == 0 we are checking that the index (i) has
returned to 0 modulo the modulus, in addition to the terms returning to
“1, 1”. What I found truly surprising is that eventually, under all moduli
tested, the subsequence “1, 1, 4” did eventually re-occur. Perhaps there is
a theorem here? I haven’t tried to prove it yet. (But you can prove that
the re-occurrence of “1, 1, 4” is equivalent to the sequence being purely
periodic, right?)

10

period period
x mod x mod x2

2 6 12
3 24 72
4 12 48
5 20 100
6 24 72
7 112 784
8 24 192
9 72 648
10 60 300
11 55 1210
12 24 144
13 364 4732
14 336 2352
15 120 1800
16 48 768
17 612 10404
18 72 648
19 342 6498
20 60 1200
21 336 7056
22 330 7260
23 1104 25392
24 24 576
25 100 2500
26 1092 14196
27 216 5832
28 336 2352
29 406 11774
30 120 1800
31 930 28830
32 96 3072
33 1320 43560
34 612 10404

period period
x mod x mod x2

35 560 19600
36 72 1296
37 2812 104044
38 342 12996
39 2184 85176
40 120 4800
41 1640 67240
42 336 7056
43 3784 162712
44 660 29040
45 360 16200
46 1104 25392
47 1504 70688
48 48 2304
49 784 38416
50 300 7500
51 1224 20808
52 1092 113568
53 5724 303372
54 216 5832
55 220 12100
56 336 9408
57 1368 25992
58 1218 70644
59 3422 201898
60 120 3600
61 3660 223260
62 930 57660
63 1008 63504
64 192 12288
65 5460 118300
66 1320 43560
67 9112 610504

period period
x mod x mod x2

68 612 41616
69 1104 76176
70 1680 58800
71 4970 352870
72 72 5184
73 10804 788692
74 8436 312132
75 600 45000
76 684 51984
77 6160 474320
78 2184 85176
79 6162 486798
80 240 19200
81 648 52488
82 4920 201720
83 13944 1157352
84 336 7056
85 3060 260100
86 11352 488136
87 4872 423864
88 1320 116160
89 3916 348524
90 360 16200
91 1456 132496
92 1104 25392
93 3720 345960
94 4512 212064
95 3420 1624500
96 96 9216
97 19012 1844164
98 2352 115248
99 3960 392040

100 300 30000

6. Binary Addition. Implement in CUDA the algorithm for binary addition of
numbers with millions of bits. Even on a device with only 256 megabytes of
global memory you can store two addends and a sum, each with 670 million

11

bits, with room left over. Have each thread (processor) be responsible for one
unsigned int (32 or 64 bits) worth of data. This will allow you to compute in
a single instruction the sum of all the bits in the unsigned int at once, taking
care of all the carries internally, and producing one carry.

7. A Tree-Full of Heads. The implementation presented here starts with many
blocks of threads, each with a rule for updating from the thread adjacent to it,
and at some point has linked all of their heads. At this point we may copy those
heads to a separate part of global memory, so that each head has a rule for up-
dating from the head adjacent to it. If these all lie in a single block of threads,
then we can use propagate, as opposed to many calls to doubleHeadLookback,
to give a value to all heads. If those heads comprised several blocks, then we
can recursively iterate the process, taking the heads of those blocks, linking
them, copying them to another part of global memory, etc..., iterating until all
the heads lie in a single block, at which point we propagate the values in that
one block. The original steps, and this modification, are shown below:

Original Algorithm

(a) Processor (thread) 0 gets a value.
All others get rules looking back one
thread.

(b) Threads within a block all build rules
that look back to the head of the
block. Those in Block 0 get values.

(c) Every head builds a rule looking back
at the previous head.

(d) Head threads double their lookback
until they all get values from the head
of Block 0.

(e) Threads within a block all get their
values from the head of their block.

Modified Algorithm

(a) Processor (thread) 0 gets a value.
All others get rules looking back one
thread.

(b) If the threads all fit into one block,
propagate the value at the head to the
rest of the threads

(c) If they don’t fit into one block, have
each head build a rule looking back to
the previous head, fill new blocks with
just the heads, and solve this problem
by recursively going back to step 1.

(d) When we exit a recursive call, have the
head of each block propagate its value
to the block that it was originally
from. Threads per block should be a
multiple of warp size to avoid wast-
ing computation on under-populated
warps and to facilitate coalescing.

12

Code this modified algorithm, then run tests to see if there is any difference in
performance compared to the original algorithm.

8. CUDA Global Memory. On page 48 of the CUDA C Best Practices Guide
[1] we read, “Threads per block should be a multiple of warp size [warp size =
32] to avoid wasting computation on under-populated warps and to facilitate
coalescing.” So we do a bit of experimentation. Figure ?? shows the running
times for recur computing on a million elements. On the horizontal axis we
vary the number of threads per block, from 32 to 255, and the vertical axis
shows running time in seconds. It seems that the worst running times occur
when the number of threads per block is a multiple of 32. Some investigation
reveals that the culprit is the kernel function copyHeadDataFromTemp. Look
over section 3.2.1 of the CUDA C Best Practices Guide to see if non-coalesced
memory accesses are the cause. And look over Section 3.2.2 of the CUDA C
Best Practices Guide to decide if memory bank conflict could be the culprit. It
may be both, one or neither.

It’s neither. All of the Rule data structures are 64 bytes, and they lie in memory
allocated by cudaMalloc so that they are all 64 byte-aligned. They are optimally
positioned for coalesced reads and writes. Also, the copyHeadDataFromTemp

kernel function makes no use of shared memory, so there are no memory bank
conflicts. The problem has to do with the way global memory is physically
structured. As does shared memory, global memory consists of some number of
“banks.” And when too many writes are being made to the same bank, the data
ends up waiting for its turn to be written to the memory. This phenomenon is
called ”partition camping.” A paper entitled Bounding the Effect of Partition
Camping in GPU Kernels is included with this module.

13

14

Bibliography

[1] The NVIDIA Corporation. The CUDA C Best Practices Guide v4.0. NVIDIA
Corporation, 2011.

[2] The NVIDIA Corporation. The CUDA C Programming Guide v4.0. NVIDIA
Corporation, 2011.

15

