nanOBTE transport simulations and more

Boltzmann Transport Equations for
Nanoscience Applications

Zlatan Aksamija
Electrical and Computer Engineering Dept.
University of Wisconsin-Madison




nanOBTE transport simulations and more

Overview

« We want to understand electrical and thermal
transport in nanoscale systems

« Simulate transport in nanotubes, nanoribbons,

nanowires, etc.

— Why BTE?

— Derivation of the BTE

— Classical vs. Quantum

— Carbon Nanotubes

— Simulation of 1D systems
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Why Boltzmann Transport Egn. (BTE)?

Originally derived for a dilute gas of non-interacting particles
Extended to the simulation of electron and phonon transport
Particle motion treated classically as in the Liouville equation

Particle interactions introduced through quantum-mechanical
perturbation theory

Very flexible, general, and powerful

Can include many other important effects:
electron bandstructure
phonon dispersion

self-consistency (Poisson equation)
Electro-thermal transport
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Distribution function

Distribution function f(r,k,t) represents the probability for a
particle to occupy position r with momentum k at time t.

Distribution function f; contains all the information about the
transport in the system.

From f; we can obtain average quantities like current, mobility,
mean-free-path, etc.

It is 7-D in general: 3-D spatial (r) + 3-D momentum (k) + time
(t) dependence.

In 1-D materials like CNTs and nanowires, space and
momentum are 1-D, so f; is 3-D altogether.
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Semi-classical vs. Quantum

Semi-classical BTE treats particles as classical point particles
— Includes scattering through Fermi’s Golden Rule
— Assumes collisions are instantaneous
— Position and momentum are independent and functions of time

Quantum BTE is capable of including quantum transport effects
— quasi-particle states
— level shift and broadening
— requires a straightforward modification to the scattering rates

Wigner equation takes this another step further to include the effects
of confining potentials

— Add higher derivatives (3, 5t etc.) of the potential and distribution




nanOBTE transport simulations and more

Particles change state by 3 different mechanisms:

1. Motion in real space due to electron velocity
2. Acceleration in momentum due to electric field
3. Scattering due to phonons

Consider a small cube in combined x and k space:

H_) H_)

X
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Particles change state by 3 different mechanisms:

1. Motion in real space due to electron velocity

The net particle gain is the difference at the two faces times the
velocity in the x direction:

df (z,y,2,1)
dt

= vz [f(z,y,2,t) — f(z +dx,y, 2,t)]dz

In the limit of small dx this becomes: #(®:%:2t) _ _  0f(z.y,21)

dt B ox
v, f(x,y,z,t) v, f(x+dx,y,z,t)
| i | P
!

dx
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Particles change state by 3 different mechanisms:

1. Motion in 3D space:

* In general 3-D space, when there is a spatial gradient to the
electron distribution, electrons will travel from a region of
higher density to region of lower density.

The gradient of the distribution points in the direction of
greatest change, therefore direction of electron motion.

Therefore the rate of change of the distribution function

(scalar!) is equal to the electron velocity (a vector!) dotted
with the gradient (another vectorl!):

(9fT (I‘, k, t)

8t () VfT(I'kt)
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Particles change state by 3 different mechanisms:

1. Motion in real space:
« Particle velocity is the time derivative of its position

« Velocity can be obtained from the bandstructure or
dispersion

o(k) = 3 ViB(k ), o(@) = Vaw(a

« Putting these together produces

8fT (I‘, k, t)

1
5 = 7 VB u) - Vefr(r k1)
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Particles change state by 3 different mechanisms:

2. Acceleration in momentum due to electric field
Again consider a small cube in k-space, and look at k, direction.

The net gain is the difference at the two faces times the velocity in
the k, direction:
df(k:m kya kza t)
dt

= O [f (Ko by, art) — (ko + dbg, iy, ke t)] dk,

df (ko kys kar ) dhy Of (ka oy iy )

In the limit of small dk, this becomes: pT g ok,

Vige f(K,oK, K0 t) Vi f(k,cHdk ok, Ko t)
| > ' >

>
dk

X
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Particles change state by 3 different mechanisms:

2. Acceleration under the force of the electric field:

When an electric field E is applied to an electron, it produces
an accelerating force F= —eE on the electron.

Magnetic field can also be added F=-e(E+vxB)
Analogous to F= ma = m*dv/dt = dp/dt, we have:

dk _

dt
Therefore the rate of change of the distribution function

(scalar!) is equal to the applied force F (a vector!) dotted with
the gradient in momentum (another vector!):

8fT(r, k, t) D

ot :_?'kaT(rakat)
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Electrons change state by 3 different mechanisms:

3. Scattering in and out of a momentum state:

« Can be derived by examining a small differential element in
momentum space

Particles occupying a state k with probability f; (k) can
scatter out of k with transition probability S(k, k )

Particles occupying a state k’ with probability E(k can

scatter into state k with transition probability S(k’,k)

S S(kK)(k)

k) 7 (k)

S(K k)fr(K") R
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Electrons change state by 3 different mechanisms:

3. Scattering in and out of a momentum state:
Every scattering into k increases the occupancy f{(k)
Every scattering out of k decreases f;(k)

The net change in occupancy f(k) is the in-scattering minus
the out-scattering

J

For each state k, add up contributions from all other states k

dfr(k) _ Z S(k/, k) fr(kr) — Sk, k/) fr(k)]

ot
k/

— SkK)(K)

— f(K)

Sk k)f(K) R

= "
dk
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Degeneracy and exclusion

Pauli’s Exclusion Principle tells us that only one electron can occupy
a given state at a given time (ignoring spin).

Because of exclusion, an electron can scatter into a state only if it is
empty.

To account for exclusion, we multiply the transition rate by the
probability that the state is not occupied, given by (1-f(k)).

Finally we add all the contributions by summing over all the possible
final states k’

dfr(k)

5 = D[S k) fr(kn)(1 = fr(k)) — S(k, k) fr(k)(1 — fr(k/))]

k/

This form referred to as “degenerate statistics”
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Boltzman Transport Eqn. (BTE)

Particles are conserved so rate of change in time has to equal
the change due to scattering
Therefore we simply equate the two rates to obtain the BTE :

dfT(r7 k7 t) _ (dfT(r7 k7 t))

dt dt

The sum can be converted to an integral in the limit of small dk.
This makes the BTE a difficult integro-differential equation.

8fT((‘I9.z,€k, 2 eEh(I‘) Vi fr(r,k,t) + %vkE(ka ) - Vefr(r k,t) =

(22)3 / d’ks [S(k1, k) fr(kn)(1 — fr(k)) — S(k, k) fr(k)(1 — fr(k))]
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“Shorthand” BTE

The BTE can be derived quickly by starting with the
semiclassical assumption and applying the chain rule

Start by noting the distribution function f; is a function of
position r, momentum k, and time t

Assume r(t) and k(t) are independent and only functions of time
REMINDER: Chain rule in 1-D and n-dimensions

df(g(t)) 0f(g)dg(t)  df(g(t)) _ dg(t)
dt ~ dq dt a - Vell®) =5~

* Apply the chain rule to obtain the complete time derivative:

dfT (I‘, k, t) . 8fT (I‘, k, t) dr dk
dt — ot —I—VrfT(I',k, t) dt _I_kaT(r?kat) dt




nanOBTE transport simulations and more

Interpreting the BTE:

The BTE is saying that probability is conserved along the
path of the particle

« Use Taylor expansion in phase space:

fr(r+dr,k + dk, t + dt) =
fr(r,k, t) + &N gy L7 £ (e, K, t) - dr + Vi fr(r, k, t) - dk

« Factor out the “dt” term and group together:

fr(r +dr.k + dk,t + dt) =
fr(ek,t) + dt (22000 4 9, fr(e k) - & + Vicfr(r K, ) - 9
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Interpreting the BTE:

The BTE is saying that probability is conserved along the
path of the particle
« Recognize the expression for total time derivative
« Substitute in the conservation equation:

fr(r+dr,k + dk,t + dt) =
(e, )+ de (L0 = (o e ) i (L2
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Interpreting the BTE:

The BTE is saying that probability is conserved along the
path of the particle:

« Particles will move in space according to their velocity:
__dr(t) g4

« Particles change momentum according to the forces acting on
them

dk eE(r
dk = gy = — B gy

Particles can scatter from a momentum state k into another
momentum state k’ due to interactions with phonons, photons,
plasmons, impurities, boundaries, etc.
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Solving the BTE

 The BTE poses tremendous computational burdens due to high
dimensionality (7-D=3-D space+3-D momentum + time)
* |In order to solve it, we must simplify:
— Consider momentum space only (homogeneous/bulk materials)

* |terative methods, spherical harmonics expansions, Rode’s Method
Consider real space only

 Moments of the BTE, Hydrodynamic equations, Drift-Diffusion
Assume distribution is near equilibrium

» Relaxation time approximation, Analytical methods
Only consider samples of the f(r,k,t)

« Monte Carlo method for device simulation
Consider 1-D systems (produces a 3-D problem)

» Good for carbon nanotubes, silicon nanowires, etc.
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Transport simulation in Carbon
Nanotubes

CNT bandstructure and Density-of-States (DOS)
CNT phonon dispersion

1-D BTE for CNTs

Upwind Discretization

Stability and Boundary Conditions (BCs)
Poisson Equation (self-consistent potentials)
Scattering Rates

Linear Analytic method

Results and Future Work
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Single-walled Carbon Nanotubes

CNTs are rolled-up sheets of monolayer
graphene

Have many interesting properties:
— Extremely strong

— Great thermal conductors
— High optical phonon frequency FRXTLLLY, =
— Can be both semiconducting or metallic —~= _

(0,10} nanotube 3 :

depending on how the graphene sheet is ozt 4
rolled up (zig-zag, armchair, chiral) <

Potential applications as
FET devices
Interconnects
Sensors
Cooling solutions
Filters, etc.

(7,10) nanotube 7%
Ichiral) ke
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CNT Bandstructure

In general, bandstructure is obtained by solving the stationary
Schroedinger equation for the periodic atomic potential

CNT Bandstructure obtained by zone folding tight-binding graphene
data according to:

N is the number of atoms in the unit cell, and k is the CNT wave-vector
K, and K, are reciprocal basis vectors of the honeycomb lattice

This allows a simple and sufficiently accurate treatment of electronic
structure

Other methods, including ab initio/DF T possible




nanOBTE transport simulations and more

CNT Bandstructure

Graphene bandstructure can be computed using tight-binding
by solving the secular equation:

det | H — ES| =0

E is the energy we are solving for, and H and S are given by:

_ €2p tf(k)
"= ( tf(k)* e

Momentum dependence enters through the form factor f(k)

Parameters s and t are the overlap and transfer integrals, and
are computed from first-principles calculations.

Typical values are: epsilon=0, s=0.129, and t=-3.033 eV.
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CNT Bands and DOS results

Results for a (10,10) metallic
tube

Note the bands crossing at zero
energy. These will contribute

most to electronic transport.

Often only this portion is taken
into account.

Also note the non-zero density
of states around Fermi level

This makes the nanotube o i
metallic (states available for S ‘ '

. ags . a7 DOS (a.u)
transport even in equilibrium).




nanOBTE transport simulations and more

Electron velocities

« Metallic (10,10) tube

* Velocity given by the gradient of
the dispersion: A

1 dE(k, 1)

1 b{z (H‘ — ES¢ )bl,g 3
K b1, 8b1 =

X
1.5

0.5

-1+

Velocity highest near Fermi
level E¢. This is the typical
value of around 8.1*10° m/s.
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CNT Phonon dispersion

Obtained by zone-folding the
graphene dispersion

Force Constant approach by
fitting to measured data

Factors due to bending of the
graphene sheet into a tube
High density of optical (OP) and
zone-boundary (ZB) modes

Strong interaction between
electrons and OP and ZB modes
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CNT Phonon velocities

« Phonon group velocities also
obtained from the gradient of
the dispersion: Acoustic — -

Modes

dw(q, )
dq

vg <Q7 M) —

velocity [mfs)

Optical modes have flat
dispersion giving rise to low
group velocities

Optical modes contribute little to
thermal transport
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1D Boltzmann Transport Eqn. (BTE)

« Electron BTE (1D):

Ofr(x, k,t) N eF d
ot h dk

% / dikt [S(kt, k) fr (k) (1 — fr(k)) — S(k, k1) fr(k)(1 — fr(k))]

e,k t) + vk, 1) o, b, 1) =

* Sum converted to an integral in the limit of small dk.
 RHS looks like a standard 2D advection equation.
« Can apply standard discretization techniques.
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Upwind Discretization

« Determine direction of differencing based on the sign of velocity and
field at each (j,k) point

n n

n _ Jik  Jeqjk relaxation time
Jak Tk/

14 sgn(vk)yk( n noy - 1 — sgn(vg)

i k)

2 2 ( .77k+1 Jak

T 92 Vj(fj,k - j—l,k) - 9 Vj( j+1,k j,k)

jak o Jak_l

« Constant 1, is the “ralaxation time” computed from the scattering rate
integral over all k
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Stability and BCs

Explicit time-stepping places a restriction on step-size At
dependent on the discretization

el | At

2t
n| Ak S

At
Vmaz| — < 1

Az

For Ax~1nm, At~1fs
This is comparable to the relaxation time (10~50fs)

Relaxation time poses another limitation on the timestep
(At<<min,(T,))

Periodic BCs in momentum (lattice is periodic)
Homogenous Neumann BCs in space (quasi-equilibrium)
Fermi-Dirac initial condition (start off with equilibrium)
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Poisson Equation

Charge and current can be obtained from

p(t,x) = /f:l:kt

I(2,t) = / (k) f(z, k. )dk

Solve the Poisson equation for the potential along the tube

Ax?p

=2V VL = —

Boundary conditions given by applied potentials
Extend to full 3-D Poisson for semiconducting CNTs
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CNT Scattering Rates

Scattering rates derived from quantum-mechanical “Fermi’s Golden
Rule”

Coupling potentials between electrons and phonons given by
Bardeen’s Deformation Potential theory

Acoustic rates have a factor of q squared:

"D [q2+(2%>2] ( 11

N, S 2 ) 6 (Bky, ) — E(ky, ug) +
2pwq,up Qaﬂp+2:|:2) ( ( ,U,) (f,uf) anUJp)

The signs depend on absorption or emission of a phonon.
The d function controls energy conservation
Can be replaced by a Lorentzian to allow collisional broadening
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CNT Scattering Rates

« Zone Boundary:

hD?

1 1
E(ki, i) — E(ky, +
(Fi, i) 2pWa,p, ( (1“1"+2]F2)5< (i, p:) (ks s) £ @an, )

kgt

Optical rate:

hD? 1 1
Z ” ( q/up‘|‘2:F2)5<E(kiaﬂi)_E(kf"uf):l:wq’“p)

za ,U'z prq p

kg, s
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Broadening

When the scattering rate is high (d[kgT) transitions can occur
between perturbed “quasi-particle” states

This is described by the particle “self-energy”

For simplicity assume self-energy is pure imaginary (no level shift,
only broadening).

Replace d-function with a Lorentzian distribution
Can add self-consistency by using optical theorem:

h h
Sk py=——ImY =
k,u 9 m (k,/i) ZT(k,,U,)

Take into account initial and final state broadening:
0 = 0(ki, p;) +0(ky, puy)
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Broadening

* Replace d-function with a Lorentzian distribution

0 (E(kiypi) — E(ky, py) £ hw(g, pp))

g

5
524+ (E(kipi)—E (ks ) thw(q,up))?

1
T

» This makes numerical calculation of scattering rate (relaxation time)
easier

* Energy no longer conserved exactly, only on the average
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Linear Analytic Method

Break integral apart into many small segments in k

Expand energies to 18t order and integrate analytically over each
small segment in k-space

Add up contributions form all segments in k-space

/dkl d
™ 62 + (B, i) — E(ky, pg) £ ho(g, 1)
)

1
2. /dk ™02+ (AE + ho(ky) (k — ky))°

Egpy

Z 1 ( o hv(kg)dk — AE 1 hv(kf)dk—l—AE)

+ tan

J J

who(k)

kg, g
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Results: IV curves for (10,10) SWNT

« Current saturates around 25puA due to onset of strong optical scattering

» Resistance scales linearily with length in the low-field regime (interconnect
applications)

/’J_ TF e

/f_-

Current (1 A)

../""-/

1 1 1 1 1 1 i
06 08 ; H 600
Voltage (V) Length (nm)
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Comments and Extensions

Extends naturally to many other 1-D systems:

— Carbon Nanoribbons (CNRs) are candidates for future FET devices
— Semiconducting CNTs show interesting current up-kick

— Rough Si nanowires show great potential for energy harvesting

Phonon (thermal) transport is treated with a similar
discretization scheme (no interaction with the electric field)

Non-equilibrium transport can be explored in detall
Thermo-electric properties can be simulated

This requires coupling through scattering integrals
(for each k sum over all k', expensive ~1hr/tstep)

Possible efficient parallel implementation
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