14.5 HMM
8/22/08
13

Biofilms Parallel Computational Model with MPI and C

By Shay M. Ellison

To Accompany "Biofilms: United They Stand, Divided They Colonize"

By Angela B. Shiflet and George W. Shiflet

Introduction

In this document, we walk through the steps for creating a parallel version of the biofilms project using MPI and C to run on any MPI enabled architecture with SPRNG. Because many steps are equivalent to the serial version, we only fully describe certain steps, outlining the others.
Setup

First, we include the libraries that we need as well as two macros, as follows:

#include <stdlib.h>

#define SIMPLE_SPRNG

#define USE_MPI

#include <mpi.h>

#include <sprng.h>
The library mpi.h (MPI), a parallel function library, contains all the functions we need to make our program parallel. The other library, sprng.h (SPRNG), contains a parallel random number generator. The macros SIMPLE_SPRNG and USE_MPI tell the library to initialize for MPI and its simple interface.

Next, we define some constants that are useful in our program. Our ROOT processor as well as some tags for sending messages are as follows:

#define ROOT 0

#define TOP_ROW 0

#define BOT_ROW 1

#define MES_TAG 2

#define CHANGED_ROOT 3

#define CHANGED_OTHER 4
We also define the constants MAX_NUTRIENT, CONSUMED, EMPTY, BACTERIUM, DEAD, and BORDER from the serial version as 0, 1, 2, and 3, respectively. We have a constant, TAKEN, an integer greater than 3, to use when growing cells.

For simplicity, we follow two guidelines in this program:

1.
We declare all variables for the main program body or functions at the beginning of the program or function, respectively.

2.
We call all MPI initialization functions before doing any other steps.

Following these rules helps with debugging and prevents many errors. The following are all the variables for the main function of the simulation (not including other functions):

int rows, cols, rowsPerProcessor, i, j, t, timeSteps, aboveProc,
 belowProc;

int **oldBacteriaGrid, **newBacteriaGrid;

double **oldNutrientGrid, **newNutrientGrid, probInitBacteria,

 diffusionRate, p;

int rowsProcBoundaries, colsProcBoundaries;

int procRank, numProc;

After defining rows, cols, timeSteps, probInitBacteria, diffusionRate and p, we declare our MPI datatype variables and call our MPI setup routines:

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Status status;

/* MPI Init and Set-up */

MPI_Init(&argc, &argv);

MPI_Comm_rank(comm, &procRank);

MPI_Comm_size(comm, &numProc);
The datatype MPI_Comm allows us to specify the communicator for this program, which is MPI_COMM_WORLD, and to use a much shorter variable name (comm). MPI_Status refers to our status variable for results from a call to MPI_Recv.

Now, we have each processor determine which processor holds the row immediately above its section of the matrix and which one has the row immediately below its section. This information is used for communication between processors. For the task of processor determination, we define a function, detNeighborRank, which takes as parameters the processor’s rank, the number of processors, and the neighbor's direction (-1 for the above neighbor, 1 for the below neighbor):

int detNeighborRank(int procRank, int numProc, int direction) {

return (procRank == 0 && direction == -1) ? numProc - 1 :

 (procRank + direction) % numProc;

}
We can call this function to obtain aboveProc and belowProc, as follows:

aboveProc = detNeighborRank(procRank, numProc, -1);

belowProc = detNeighborRank(procRank, numProc, 1);

Parallel Random Numbers

As mentioned earlier, SPRNG is the parallel random number library we use. The simple interface provides two functions we employ in the simulation: sprng, which returns the next random double in [0, 1), and isprng, which returns a random int in [0,231).

For readability, we define a function randomReal that calls sprng:

double randomReal(void) {

return sprng();

}
For a random integer from 0 to some non-inclusive upper bound, we define a function randomInt that returns the result of isprng mod the upper bound:

int randomInt(int upperBound) {

return isprng() % upperBound;

}
Domain Decomposition

For this model, we divide matrices by rows across the number of specified processors. For example, if the simulation has a 10 (10 matrix and we are using two processors, then each processor works on a 5 (10 submatrix. In general, for r rows and p processors, each processor works on r/p rows of the matrix.

Our model requires that the number of matrix rows be evenly divisible by the number of processors. If this condition is not true, we add a sufficient number of rows, as follows:
if (rows % numProc != 0) {

/* Rows are not evenly divisible by number of processors */

/* so make numProc divide rows */

rows += numProc - (rows % numProc);

}

Next, we calculate the number of rows per processor, which we store in rowsPerProcessor. Because of boundary conditions, we must also calculate the total number of rows and columns for our matrices by adding 2 to rowsPerProcessor and cols, respectively.
rowsPerProcessor = rows / numProc;

/* the number of rows and cols including boundaries */

rowsProcBoundaries = rowsPerProcessor + 2;

colsProcBoundaries = cols + 2;

We then allocate memory for our bacteria and nutrient grids. We need two of each so that we can store new values when working on matrices. Thus, we create four arrays of arrays to get four two-dimensional arrays to represent the matrices or grids. That is, we create an oldNutrientGrid, a newNutrientGrid, an oldBacteriaGrid, and a newBacteriaGrid, all of size rowsProcBoundaries (colsProcBoundaries:
/* allocate memory for matrices */

oldNutrientGrid = malloc(sizeof(double*) * rowsProcBoundaries);

newNutrientGrid = malloc(sizeof(double*) * rowsProcBoundaries);

oldBacteriaGrid = malloc(sizeof(int*) * rowsProcBoundaries);

newBacteriaGrid = malloc(sizeof(int*) * rowsProcBoundaries);

for (i = 0; i < rowsProcBoundaries; i++) {

oldNutrientGrid[i] = malloc(sizeof(double) *

 colsProcBoundaries);

newNutrientGrid[i] = malloc(sizeof(double) *

 colsProcBoundaries);

oldBacteriaGrid[i] = malloc(sizeof(int) *

 colsProcBoundaries);

newBacteriaGrid[i] = malloc(sizeof(int) *

 colsProcBoundaries);

}
The matrices oldNutrientGrid and oldBacteriaGrid are initialized following the same rules as in the serial version of the program with two exceptions: Ghost cells are not handled yet, and initialization is only called once on every processor, setting up the left and right boundary conditions and keeping those elements throughout the simulation.
Boundary Conditions

We begin the simulation by establishing what to do at each time step. First, we fill the ghost cells on the top and bottom of oldNutrientGrid and oldBactericaGrid by sending and receiving messages in a certain order dependent upon the processor’s rank. That is, each processor alternates between sending and receiving in a pattern determined by its processor rank. We accomplish this task by using the MPI functions MPI_Send and MPI_Recv. The prototypes for MPI_Send and MPI_Recv are as follows:

int MPI_Send(

 void *buf, /* address of variable to send data from */

 int count, /* number of elements to send */

 MPI_Datatype dtype, /* MPI type of element(s) */

 int dest, /* the receiving process */

 int tag, /* the message tag or identifier */

 MPI_Comm comm); /* the communicator */

MPI_Recv(
 void *buf, /* address of variable to store received data */

 int count, /* number of elements to receive */

 MPI_Datatype dtype, /* MPI type of element(s) */

 int source, /* the sending process */

 int tag, /* message tag or identifier */

 MPI_Comm comm, /* the communicator */

 MPI_Status *status); /* address of status variable */

We must remember that MPI_Send and MPI_Recv are blocking calls, which is not as important in MPI_Send’s case as in MPI_Recv’s. MPI_Recv does not allow a calling process to continue execution until that calling process receives a message from the indicated receiving processor with the specified tag on the given communicator. Thus, we must make sure that every MPI_Recv on one processor has an accompanying MPI_Send coming from another processor. For example, the next paragraph's code segment involving the ROOT processor and Processor 1 demonstrates this interaction.

If we are designing this simulation for just two processors, we can alternately transfer cells from one processor to the other, creating a unique send-and-receive pattern on each processor. For example, the pattern for our simulation can be the following:

if (procRank == ROOT) {

/* ------------Nutrient Grid--------------- */

/* Send top row to processor 1's bottom ghost row */

MPI_Send(&oldNutrientGrid[1][1], cols, MPI_DOUBLE, 1,

 TOP_ROW, comm);

/* Receive processor 1's bottom row as top ghost row */

MPI_Recv(&oldNutrientGrid[0][1], cols, MPI_DOUBLE, 1,

 BOT_ROW, comm, &status);

/* Send bottom row to processor 1's top ghost row */

MPI_Send(&oldNutrientGrid[rowsPerProcessor][1], cols,

 MPI_DOUBLE, 1, BOT_ROW, comm);

/* Receive processor 1's top, place in bottom ghost row */

MPI_Recv(&oldNutrientGrid[rowsPerProcessor + 1][1], cols,

 MPI_DOUBLE, 1, TOP_ROW, comm, &status);

/* -----------Bacteria Grid----------------

 * Repeat above pattern with oldBacteriaGrid */

MPI_Send(&oldBacteriaGrid[1][1], cols, MPI_INT, 1, TOP_ROW,

 comm);

MPI_Recv(&oldBacteriaGrid[0][1], cols, MPI_INT, 1, BOT_ROW,

 comm, &status);

MPI_Send(&oldBacteriaGrid[rowsPerProcessor][1], cols,

 MPI_INT, 1, BOT_ROW, comm);

MPI_Recv(&oldBacteriaGrid[rowsPerProcessor + 1][1], cols,

 MPI_INT, 1, TOP_ROW, comm, &status);

} else {

/* ------------Nutrient Grid--------------- */

/* Receive ROOT's top row, place in bottom ghost row */

MPI_Recv(&oldNutrientGrid[rowsPerProcessor + 1][1], cols,

 MPI_DOUBLE, ROOT, TOP_ROW, comm, &status);

/* Send bottom row to ROOT's top ghost row */

MPI_Send(&oldNutrientGrid[rowsPerProcessor][1], cols,
 MPI_DOUBLE, ROOT, BOT_ROW, comm);

/* Receive ROOT's bottom row, place in top ghost row */

MPI_Recv(&oldNutrientGrid[0][1], cols, MPI_DOUBLE, ROOT,
 BOT_ROW, comm, &status);

/* Send top row to ROOT's bottom ghost row */

MPI_Send(&oldNutrientGrid[1][1], cols, MPI_DOUBLE, ROOT,
 TOP_ROW, comm);

/* -----------Bacteria Grid---------------- */

MPI_Recv(&oldBacteriaGrid[rowsPerProcessor + 1][1], cols,
 MPI_INT, ROOT, TOP_ROW, comm, &status);

MPI_Send(&oldBacteriaGrid[rowsPerProcessor][1], cols,
 MPI_INT, ROOT, BOT_ROW, comm);

MPI_Recv(&oldBacteriaGrid[0][1], cols, MPI_INT, ROOT,
 BOT_ROW, comm, &status);

MPI_Send(&oldBacteriaGrid[1][1], cols, MPI_INT, ROOT,
 TOP_ROW, comm);

}

We determine the program flow for each processor by using an if-else statement based on whether the processor rank is equivalent to the ROOT processor or not. The basic pattern that the ROOT processor follows in this segment is Send, Receive, Send, Receive; and the other, Processor 1, does Receive, Send, Receive, Send. These alternating patterns are necessary because MPI_Recv is a blocking call that relies on the presence of a matching MPI_Send to allow the processor to continue.

Because we want this simulation to work on any number of processors, we must develop a way for processors to send and receive the top and bottom rows to and from their neighbors. First, we must divide the processors into alternating send-receive units. We proceed by recognizing a common trait, processor rank, of all the processors in our communication network MPI_COMM_WORLD. Recall that assuming there are n processors on a communicator, each processor receives a rank between 0 and n – 1, inclusively. Because this system relies on integer values greater than or equal to 0, we can divide the processors into two sets: even ranks and odd ranks. We use an if-else statement similar to the one in the two-processor version to check if a processor’s rank is odd or even.

To send and receive the necessary information for a matrix, each processor, whether odd or even, must perform two send and two receive operations. As in the two-processor model, each set of processors from the division into even ranks and odd ranks must follow an alternating pattern that must be opposite to its complementary set. Thus, if odd processors follow a Send-Receive-Send-Receive pattern, even processors must follow a Receive-Send-Receive-Send pattern. Moreover, the key to making this pattern work with multiple processors is to ensure that the parts we choose to send allow all of the processors to receive the information they need and that no two processors are each relying on the other to send; that is, we communicate information without deadlock. Here is one such solution:

if (procRank % 2 == 1) { /* Odd Processor Rank */

/* ------------Nutrient Grid--------------- */

/* Send top row to ABOVE processor's bottom ghost row */

MPI_Send(&oldNutrientGrid[1][1], cols, MPI_DOUBLE,
 aboveProc, TOP_ROW, comm);

/* Receive BELOW processor's top in bottom ghost row */

MPI_Recv(&oldNutrientGrid[rowsPerProcessor + 1][1], cols,
 MPI_DOUBLE, belowProc, TOP_ROW, comm, &status);

/* Send bottom row to processor BELOW's top ghost row */

MPI_Send(&oldNutrientGrid[rowsPerProcessor][1], cols,
 MPI_DOUBLE, belowProc, BOT_ROW, comm);

/* Receive ABOVE processor's bottom row in top ghost row */

MPI_Recv(&oldNutrientGrid[0][1], cols, MPI_DOUBLE,
 aboveProc, BOT_ROW, comm, &status);

/* -----------Bacteria Grid---------------- */

MPI_Send(&oldBacteriaGrid[1][1], cols, MPI_INT, aboveProc,
 TOP_ROW, comm);

MPI_Recv(&oldBacteriaGrid[rowsPerProcessor + 1][1], cols,
 MPI_INT, belowProc, TOP_ROW, comm, &status);

MPI_Send(&oldBacteriaGrid[rowsPerProcessor][1], cols,
 MPI_INT, belowProc, BOT_ROW, comm);

MPI_Recv(&oldBacteriaGrid[0][1], cols, MPI_INT, aboveProc,
 BOT_ROW, comm, &status);

} else { /* Even Processor Rank */

/* ------------Nutrient Grid--------------- */

/* Receive BELOW's top row, place in bottom ghost row */

MPI_Recv(&oldNutrientGrid[rowsPerProcessor + 1][1], cols,
 MPI_DOUBLE, belowProc, TOP_ROW, comm, &status);

/* Send top row to ABOVE's bottom ghost row */

MPI_Send(&oldNutrientGrid[1][1], cols, MPI_DOUBLE,
 aboveProc, TOP_ROW, comm);

/* Receive ABOVE's bottom row, place in top ghost row */

MPI_Recv(&oldNutrientGrid[0][1], cols, MPI_DOUBLE,
 aboveProc, BOT_ROW, comm, &status);

/* Send bottom row to BELOW's top ghost row */

MPI_Send(&oldNutrientGrid[rowsPerProcessor][1], cols,
 MPI_DOUBLE, belowProc, BOT_ROW, comm);

/* -----------Bacteria Grid---------------- */

MPI_Recv(&oldBacteriaGrid[rowsPerProcessor + 1][1], cols,
 MPI_INT, belowProc, TOP_ROW, comm, &status);

MPI_Send(&oldBacteriaGrid[1][1], cols, MPI_INT, aboveProc,
 TOP_ROW, comm);

MPI_Recv(&oldBacteriaGrid[0][1], cols, MPI_INT, aboveProc,
 BOT_ROW, comm, &status);

MPI_Send(&oldBacteriaGrid[rowsPerProcessor][1], cols,
 MPI_INT, belowProc, BOT_ROW, comm);

}

The alternating pattern on an even number of processors is just a scaled-up version of that for two processors (see Figure 1 b). A simulation running on an odd number of processors creates a more interesting situation, where the first and last processors are both even ranks (see Figure 1 a).

Figure 1
Send-receive pattern for an odd and an even number of processors

a.
Three processors

b.
Four processors
[image: image1.jpg]1) Receive from |
2)Send o2
3) Receive from 2
4)Sendto |

1) Send to 0
2) Receive from 2
3)Send o2

4) Receive from 0

1) Receive from 0
2)Sendto |
3) Receive from |
4)Sendto 0

1) Receive from |
2)Sendto3
3) Receive from 3

4)Sendto |

1) Send to 0
2) Receive from 2
3)Send 02

4) Receive from 0

1) Receive from 3
2)Sendto |
3) Receive from |
4)Send o3

1) Send t0 2
2) Receive from |
3)Sendto |

4) Receive from 2

Bacterial Growth

Diffusion is performed on all the processors’ oldNutrientGrid. Since diffusion works as in the serial version, we do not cover the algorithm here.

Bacterial growth in a parallel simulation, however, differs from the serial version when growth occurs into a cell residing on another processor. At the top of the program we define a type, GridLocation, which we use to keep track of the information of the cell into which a living cell grows. GridLocation is the type for a struct, called location, that stores a row, column, and whether the newly grown cell resides on another processor:

typedef struct location {

int row, col, otherProc;

} GridLocation;

Using this type, we can define a function, parallelPickNeighbor, to pick an empty neighbor, if one exists, and return the row, column, and locality:

GridLocation parallelPickNeighbor(int row, int col, int rows,
int cols, int n, int e, int s, int w) {

int i, count;

count = 0; /* actual number of EMPTY neighbors */

/* list of neighbor cells' status numbers */

int lst[4] = {n, e, s, w};

int pos[4] = {0, 0, 0, 0}; /* lst indices of EMPTY cells */

for (i = 0; i < 4; i++) {

 /* Check for empty neighbors in lst, record the index

 * in pos */

if (lst[i] == EMPTY) {

++count;

pos[i] = i;

}

}

GridLocation loc;

if (count == 0) {

loc.row = row;

loc.col = col;

} else {

int rand = randomInt(count);

int index = pos[rand]; /* empty neighbor from lst */

if (index == 0) { /* north */

if (row > 1) {

loc.row = row - 1;

loc.col = col;

loc.otherProc = 0;

} else { /* bottom row of neighbor processor */

loc.row = rows;

loc.col = col;

loc.otherProc = 1;

}

} else if (index == 1) { /* east */

loc.row = row;

loc.col = col + 1;

loc.otherProc = 0;

} else if (index == 2) { /* south */

if (row < rows) {

loc.row = row + 1;

loc.col = col;

loc.otherProc = 0;

} else { /* top row of neighbor processor */

loc.row = 1;

loc.col = col;

loc.otherProc = 1;

}

} else { /* west */

loc.row = row;

loc.col = col - 1;

loc.otherProc = 0;

}

}

return loc;

}

With parallelPickNeighbor, we can define the function parallelGrow. Because of the amount of detail, we break the explanation into parts. The prototype is similar to the serial version with additions of the processor rank and number of processors:

void parallelGrow(int **oldBacteriaGrid, int **newBacteriaGrid,

 double **nutrientGrid, double p, int rows,
 int cols, int procRank, int numProcs)

We declare the variables, as follows:

int i, j, in, is, je, jw, changedAbove, changedBelow,

 indexA, indexB, recChanged, tempSize;
The probability of growing is determined as in the serial version, so only the call and variable are shown:

double prob = probGrow(oldBacteriaGrid, nutrientGrid, p, rows, cols);
Next, we setup what we need for communication, similar to the setup in main:

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Status status;

int aboveProc = detNeighborRank(procRank, numProcs, -1);

int belowProc = detNeighborRank(procRank, numProcs, 1);
Because a processor sends the locations of the cells that its cells grew into to both the above and below processors, we store these locations separately. The maximum number of cells for growth expansion above or below is the number of columns, and we are storing the locations in the array by row then column order. Thus, we define a length (len), cols * 2, for the sizes of two new arrays, locsAbove and locsBelow:
int len = cols * 2; /* total possible size 2 columns */
/* store any updated columns */

int *locsAbove = malloc(sizeof(int) * len);

int *locsBelow = malloc(sizeof(int) * len);
/* receive locations from above and below processors */
int *locr = malloc(sizeof(int) * len * 2);

Next, we deal with the growing and dying of cells as in the serial version while going through all the cells in oldBacteriaGrid. Additionally, we store information when a bacterium grows to a cell on another processor:

if (oldBacteriaGrid[i][j] == BACTERIUM) {

if (nutrientGrid[i][j] <= 0) {

newBacteriaGrid[i][j] = DEAD;

} else { /* try to divide */

if (randomReal() < prob * nutrientGrid[i][j]) {

in = i + 1;

is = i - 1;

je = j + 1;

jw = j - 1;

GridLocation loc = parallelPickNeighbor(i, j,

 rows, cols, oldBacteriaGrid[in][j],
 oldBacteriaGrid[i][je],
 oldBacteriaGrid[is][j],

 oldBacteriaGrid[i][jw]);

if (loc.otherProc) { /* on another processor */

if (loc.row == 1) { /* grew down to below processor */

changedBelow++;

locsBelow[indexB++] = loc.row;

locsBelow[indexB++] = loc.col;

} else { /* grew up to above processor */

changedAbove++;

locsAbove[indexA++] = loc.row;

locsAbove[indexA++] = loc.col;

}

} else {

newBacteriaGrid[loc.row][loc.col] = BACTERIUM;

oldBacteriaGrid[loc.row][loc.col] = TAKEN;

}

newBacteriaGrid[i][j] = BACTERIUM;

} else {

newBacteriaGrid[i][j] = BACTERIUM;

}

}

} else {

if (oldBacteriaGrid[i][j] != TAKEN)

newBacteriaGrid[i][j] = oldBacteriaGrid[i][j];

}

Each processor must also send the data in locsAbove and locsBelow to surrounding processors and receive any ones that grew onto it from the above or below processor. To do these tasks, we employ a send-receive pattern similar to transferring ghost cells, but we also count the number of cells that become living bacteria. After a Receive, we use another MPI function, MPI_Get_count, that allows us to get the number of items sent by the source processor of MPI_Recv. The code follows:

recChanged = 0;

if (procRank % 2 == 1) { /* Odd processor rank */

/* Send to Above */

MPI_Send(locsAbove, changedAbove * 2, MPI_INT, aboveProc,

 CHANGED_UP, comm);

/* Receive from Below */

MPI_Recv(locr, len, MPI_INT, belowProc, CHANGED_UP, comm,
 &status);

MPI_Get_count(&status, MPI_INT, &tempSize);

recChanged += tempSize;

/* Send to Below */

MPI_Send(locsBelow, changedBelow * 2, MPI_INT, belowProc,
 CHANGED_DOWN, comm);

/* Receive from Above */

MPI_Recv(locr + recChanged, len, MPI_INT, aboveProc,
 CHANGED_DOWN, comm, &status);

MPI_Get_count(&status, MPI_INT, &tempSize);

recChanged += tempSize;

} else { /* even */

/* Receive from Below */

MPI_Recv(locr, len, MPI_INT, belowProc, CHANGED_UP, comm,
 &status);

MPI_Get_count(&status, MPI_INT, &tempSize);

recChanged += tempSize;

/* Send to Above */

MPI_Send(locsAbove, changedAbove * 2, MPI_INT, aboveProc,
 CHANGED_UP, comm);

/* Receive from Above */

MPI_Recv(locr + recChanged, len, MPI_INT, aboveProc,
 CHANGED_DOWN, comm, &status);

MPI_Get_count(&status, MPI_INT, &tempSize);

recChanged += tempSize;

/* Send to Below */

MPI_Send(locsBelow, changedBelow * 2, MPI_INT, belowProc,
 CHANGED_DOWN, comm);

}

Finally, we change all the cells included in locr to BACTERIUM by calling a function processParallelGrowingCells, whose definition follows:

void processParallelGrowingCells(int **bacteriaGrid,
 int *locations, int changed) {

int i, row, col;

for (i = 0; i < changed; i += 2) {

row = locations[i];

col = locations[i + 1];

bacteriaGrid[row][col] = BACTERIUM;

}

}

After growth is complete, the bacteria consume nutrients. Because this step follows the same rules as the serial version, we do not discuss consumption in detail here. One difference between the versions, however, is that we store the new amounts of nutrients into oldNutrientGrid to save time copying in the next step. Additionally, we copy the values from newBacteriaGrid to oldBacteriaGrid before starting the next time step.

Printing

At the start of each time step, we print the bacteria grid to see what is happening. Normally, in a serial version, we print the matrix at the beginning of a time step. With the parallel version, however, because parts of the matrix are on several processors, we must do some work to ensure that the matrix prints in the correct order.

We start by adding a few variables to the beginning of main:

int n, size1d

int *bacGrid1d, *printBacGrid1d
Now, we allocate space for these two new arrays under the domain decomposition section of our code:

size1d = rowsPerProcessor * cols;

bacGrid1d = malloc(size1d * sizeof(int));

if (procRank == ROOT) {

printBacGrid1d = malloc(rows * cols * sizeof(int));

}
The ROOT processor gathers a one-dimensional version of each processor’s matrix in rank order. To do this, we use the MPI function MPI_Gather:

int MPI_Gather(void* send_buffer, int send_count,
 MPI_datatype send_type, void* recv_buffer,
 int recv_count, MPI_Datatype recv_type,
 int rank, MPI_Comm comm)

Every processor makes a one-dimensional version of its matrix and calls the MPI_Gather routine. The ROOT processor stores the information collectively in printBacGrid1d. We place the code for these tasks at the top of the time-step loop before the transfer of ghost cells:

for (t = 0; t < timeSteps; t++) {

/* copy values from oldBacteriaGrid to a 1d matrix to be

 * gathered together by ROOT */

n = 0;

for (i = 1; i <= rowsPerProcessor; i++) {

for (j = 1; j <= cols; j++) {

bacGrid1d[n++] = oldBacteriaGrid[i][j];

}

}

MPI_Gather(bacGrid1d, size1d, MPI_INT, printBacGrid1d,
 size1d, MPI_INT, ROOT, comm);

Only the ROOT processor prints the matrix by calling a function, print1dMatrix, which we define as follows:

void print1dMatrix(int *matrix, int rows, int cols) {

int i, col;

col = 1;

for (i = 0; i < rows * cols; i++) {

printf("%d", matrix[i]);

if (col++ == cols) {

printf("\n");

col = 1;

}

}

}
We call print1dMatrix immediately after the call to MPI_Gather:

if (procRank == ROOT) {

print1dMatrix(printBacGrid1d, rows, cols);

printf("\n");

}

Running the Simulation
Before running the simulation, we must first compile the program. Suppose we name the file BiofilmParallel.c. Normally we can compile an MPI program such as this one on a system with MPI with the following command:

mpicc –o BiofilmParallel BiofilmParallel.c

However, because we are using SPRNG, we have to indicate the location of the SPRNG library on the system. This location varies from cluster to cluster, but on the NCSA IBM IA-64 Linux Cluster (called Mercury) we use the following command:

mpicc -O2 -I /usr/projects/ncsamath/sprng/sprng2.0/include –o

 BiofilmParallel BiofilmParallel.c
 -L/usr/projects/ncsamath/sprng/sprng2.0/intel/lib -lsprng
 -L/usr/projects/ncsamath/gmp/gmp-4.1.3/lib –lgmp

Running the program, however, is simple across all platforms using the following command:

mpirun –np <number of processors> BiofilmParallel.c

