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Abstract

A description of Earlham College’s PetaKit software suite, with a guide for using PetaKit’s central
unit StatKit to gather and analyze performance data on various systems.
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1 Background

High performance computing raises the bar for benchmarking. Existing benchmarking applications such
as Linpack[2] measure the raw power of a computer in one dimension, but in the myriad architectures of
high performance cluster computing an algorithm may show excellent performance on one cluster while
performing poorly on another cluster. Petakit aims to improve this weakness of standard benchmarking
by using multidimensional benchmarking technique that measure a cluster’s abilities via multiple unique
tests rather than just one. In its final form, PetaKit will support thirteen different tests - one for each
of the the thirteen dwarfs of computing as published in Berkeley’s parallel computing research paper[1].
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Figure 1: PetaKit’s flow of data[4]

2 PetaKit Infrastructure

When a PetaKit tarball is decompressed on a supported cluster, first Autotools is run to build the files.
Then stat.pl takes its parameters and generates a set of shell scripts, one for each combination. Stat.pl
submits these scripts to the scheduler, resubmitting for each repetition, and when each is finished it pipes
its output through ssh to the parser.pl script on a computer at Earlham College. Parser.pl parses the
output into data which it sends to a PostgreSQL relational database. The data remains in the database
where it can be accessed via a web browser application which allows the user to pick dependent and
independent variables and compare the scaling of one setup to another (see Figure 1). The most common
use of the graph is to compare OpenMP performance to MPI performance to hybrid performance by
plotting the three threads vs. walltime.

3 Parallel and Distributed Computing

In parallel computing, a problem is divided up and each of multiple processors performs a part of
the problem. The processors work at the same time, in parallel. There are three primary reasons to
parallelize a problem.

The first is to achieve speedup, or to solve the problem in less time. As one adds more processors
to solve the problem, one may find that the work is finished faster, although there is a limit. An
observation known as Amdahls Law says that there is a theoretical limit to the amount of speedup that
can be achieved from strong scaling. At some point, the number of processors exceeds the amount of
work available to do in parallel, and adding processors results in no additional speedup. Worse, the time
spent communicating between processors overwhelms the total time spent solving the problem, and it
actually becomes slower to solve a problem with more processors than with fewer.

The second reason to parallelize is to solve a bigger problem. More processors may be able to solve
a bigger problem in the same amount of time that fewer processors are able to solve a smaller problem.
If the problem size increases as the number of processors increases, we call it weak scaling.

The third reason to parallelize is that it allows a problem that is too big to fit in the memory of one
processor to be broken up such that it is able to fit in the memories of multiple processors.

In parallel processing, rather than having a single program execute tasks in a sequence, the program
is split among multiple execution flows executing tasks in parallel, i.e. at the same time. The term exe-
cution flow refers to a discrete computational entity that performs processes autonomously. A common
synonym is execution context; flow is chosen here because it evokes the stream of instructions that each
entity processes.

Execution flows have more specific names depending on the flavor of parallelism being utilized. In
distributed memory parallelism, in which execution flows keep their own private memories (separate
from the memories of other execution flows), execution flows are known as processes. In order for one
process to access the memory of another process, the data must be communicated, commonly by a
technique known as message passing. The standard for this is the Message Passing Interface (MPI),
which defines a set of primitives for packaging up data and sending them between processes.

In another flavor of parallelism known as shared memory, in which execution flows share a memory
space among them, the execution flows are known as threads. Threads are able to read and write to



and from memory without having to send messages. The standard for shared memory considered in the
BCCD modules is OpenMP, which uses a series of directives for specifying parallel regions of code to be
executed by threads.

4 Supported Dwarfs

The combination of the BCCD and PetaKit support representatives of many of the thirteen parallel
dwarfs[1] outlined by the group at UC Berkeley. The parallel architecture of each is described below.

4.1 Embarrassingly Parallel - Area Under a Curve

Calculating the area under a curve on graph is an important task in science. There are many applications
of the area under a curve in many fields of science, including pharmacokinetics and clinical pharmacology,
machine learning, medicine, neuroscience, psychiatry and psychology, chemistry, environmental science,
fisheries and aquatic sciences, economics, and many others.

The calculus developed by Isaac Newton and Gottfried Leibniz in the 17th century allows for the
exact calculation of the area of simple curves through integration, but for many functions integrals do
not exist for finding the area under their curves, or these integrals cannot be used to find the area
in a reasonable number of steps. To compensate for this, other techniques can be used that provide
acceptable approximations for the area under a curve.

This module considers the Riemann method of integration, developed by Bernhard Riemann in the
19th century for approximating the area under a curve. There are four methods of Riemann sum for
approximating the area under curves on a graph. Right and left methods make the approximation
using the right and left endpoints of each subinterval. Maximum and minimum methods make the
approximation using the largest and smallest endpoint values of each subinterval. The values of the
sums converge as the subintervals halve from top-left to bottom-right. The specific Riemann method
explored in this module involves dividing the domain over which we are integrating into segments of
equal width that serve as the bases of rectangles. The heights of the rectangles correspond to the y-value
of the function for an x-value found somewhere within the rectangles widths. The sum of the areas of
the rectangles formed by this method is the approximation of the area under the curve. This module
considers the Left Riemann sum, in which each rectangle has the height of the left-most point of its
width.

The complete background, science and operating instructions for the GalaxSee module can be found
at http://www.shodor.org/petascale/materials/UPModules/AreaUnderCurve/

4.2 N-Body - GalaxSee

One of the grand challenge problems in astronomy is the evolution and structure of the universe and
galaxies. The universe is seen to have a structure of sheets and voids on a large scale. Galaxies are seen
to often have a spiral structure that is difficult to explain. Space is not occupied by a homogeneous
fluid, but by discrete particles that interact through gravity over long ranges. The N-body problem is
the problem of predicting the motion of a group of celestial objects that interact with each other with
respect to gravity.

The N-Body problem is a problem in which more than 2 particles interact in such a way that every
particle has the potential to interact with every other particle in a meaningful way. Typically this is
defined to be any problem where you expect to see forces acting at a distance, such as gravitational
interactions on astronomical spatial scales, or electroweak interactions on molecular spatial scales. The
characteristics of the N-Body problem are that it has historically pushed the boundaries of our ability
to handle both large computational problems and chaotic computational problems. BCCD Comes with
two flavor or N-body problems. GalaxSee and GalaxSee-v2. GalaxSee:

The GalaxSee code is a simple implementation of parallelism. Since most of the time in a given
N-Body model is spent calculating the forces, we only parallelize that part of the code. Client programs
that just calculate accelerations are fed every particles information, and a list of which particles that
client should compute. A server runs the main program, and sends out requests and collects results
during the force calculation. You could think of the total running time in the following way.

A) Tt takes some time to send out information on N particles to P — 1 processors each of S time
steps.



B) It takes some time for each processor to calculate N/P x N interactions each of every S time
steps.

As long as you run the model for enough time steps that not much time is spent setting-up the
program, a reasonable model for how long the GalaxSee program will take to run on a given cluster is
time=A*xNx(P—1)4+ BN xN/P.

4.2.1 Scaling

In order to measure parallel scaling performance of BCCD module Galaxy, we used weak and strong
scaling. The point of the strong scaling is to keep the same amount for the workload (in our case 10.000
generations for N-Body problem) and run it against different number of cores. Since LittleFe V4 units
have 6 dual core nodes, we run the same amount of load on 1 to 12 cores.

Strong and Weak Scaling with GalaxSee, an N-Body Code, on V4
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10K generations per run for strong scaling.
Start = 1K generations plus 1K generations per additional core for weak scaling

It obvious in the graph that we get speedup every time we increase the number of cores. Furthermore,
the speedup is getting smaller and smaller every time we increment the number of cores, which provides
a great way for teaching overload. In the graph, strong scaling is represented with the red line

In the case of the weak scaling (represented by the green line in this graph), the amount of the
workload is proportionally increased every time we add another core. For example, when we were
testing for one core the workload was 1.000 generations of N-Body problem, for two cores the workload
was 2.000 generations etc. In the perfect and symmetric world, this should generate a straight line. Of
course, in the world of HPC this is impossible and graph confirms that.

The complete background, science and operating instructions for the GalaxSee module can be found
at http://shodor.org/petascale/materials/UPModules/NBody/

4.3 Monte Carlo - Paramater Space

The parameter space model is a study of the dart game 301. In the game of 301, you start at 301 points
and work your way down to zero. The board is divided into 20 wedges, with the bull’s-eye in the middle



worth 25 points. The ring around the outer edge is a double score, the inner ring is a triple score, and
the exact center of the bull’s-eye is a double score. You get three darts per turn, and except for the
beginning and end of the game (which require hitting the double ring) the goal is to score as high as
possible.

The origin of this model began in the dart league at Eammon’s in Loudonville, New York. It was a
friendly league, with lots of beginners, and lots of free advice for beginners. One piece of advice often
given to players was that if you missed a lot, then you should aim at the 1, so that when you miss
you will hit either the 20 or the 18. This advice seems suspicious, so we need to make the following
assumption before going further: Typical dart throws will have a random direction from some aim point
and a normal distance from some aim point.

We set up a Monte Carlo model to test each spot on the board to determine the average score of
a three dart throw if we aimed at that point, and we ran it with different accuracy levels, where the
accuracy level was defined as the standard deviation of the normal distribution in distance from the
aim point. And then we wait. Monte Carlo models work by running random events multiple times and
averaging the results. If you want high accuracy, you may have to run the model many times. The code
here is a reproduction of that model, designed to allow the user to visualize the solution as it progresses.
It is also designed to break the model up into pieces that can be solved in parallel by different computers.

The complete background, science and operating instructions for the Parameter Space module can
be found at http://bccd.net/wiki/index.php/Parameter_Space

4.4 Structured Grid - Conway’s Game of Life

This module teaches: 1) Conways Game of Life as an example of a cellular automaton, 2) how cellular
automata are used in solutions to scientific problems,; 3) how to implement parallel code for Conways
Game of Life (including versions that use shared memory via OpenMP, distributed memory via the
Message Passing Interface (MPI), and hybrid via a combination of OpenMP and MPI), 4) how to
measure the performance and scaling of a parallel application in multicore and manycore environments,
and 5) how cellular automata fall into the Structured Grid dwarf (a class of algorithms that have similar
communication and computation patterns).

The cellular automaton is an important tool in science that can be used to model a variety of
natural phenomena. Cellular automata can be used to simulate brain tumor growth by generating a 3-
dimensional map of the brain and advancing cellular growth over time [1]. In ecology, cellular automata
can be used to model the interactions of species competing for environmental resources. These are just
two examples of the many applications of cellular automata in many fields of science, including biology,
ecology, cognitive science, hydrodynamics, dermatology, chemistry, environmental science, agriculture,
operational research, and many others.

Cellular automata are so named because they perform functions automatically on a grid of individual
units called cells. One of the most significant and important examples of the cellular automaton is John
Conways Game of Life, which first appeared in [15]. Conway wanted to design his automaton such that
emergent behavior would occur, in which patterns that are created initially grow and evolve into other,
usually unexpected, patterns. He also wanted to ensure that individual patterns within the automaton
could dissipate, stabilize, or oscillate. Conways automaton is capable of producing patterns that can
move across the grid (gliders or spaceships), oscillate in place (flip-flops), stand motionless on the grid
(still lifes), and generate other patterns (guns).

Conway established four simple rules that describe the behavior of cells in the grid. At each time
step, every cell in the grid has one of two particular states: ALIVE or DEAD. The rules of the automaton
govern what the state of a cell will be in the next time step.

The complete background, science and operating instructions for the Life module can be found at
http://www.shodor.org/petascale/materials/UPModules/GameOfLife/

5 Using PetaKit to Collect Performance Data

Results collected and visualized from the full PetaKit infrastructure are available online at http://cluster.earlham.edu/ car-
rick/dbvis/petakit.php. The central unit of PetaKit, StatKit, and a plotting utility PlotKit are included
in this module. StatKit will collect performance statistics for a command-line program that can be run



non-interactively and place them in a text file that can be run through PlotKit or graphed in Microsoft
Excel.

The following is an example of a command line for collecting performance data from an area-under-
curve program over various process counts.

perl stat.pl --cl ‘mpirun --byslot -np $processes ../area $problem_size’
--t sooner.lsf

--problem_size 50000000 --processes 1,2,3,4

--database text

Arguments:
--cl ‘mpirun --byslot -np $processes ../area $problem_size’

This is the command line template. Everything in the command line template is read verbatim except
for variables, which are preceded by dollar signs. The variables are populated with the values given to
them in the other commands, and PetaKit automatically cycles through every possible combination of
the sets of values given to these variables.

Currently, the Petakit command line template interface supports the following five variables:

e “function”

e ‘“problem_size”

o “threads”
° “Steps”
° Ltstyleﬂﬂ

While their names suggest very specific usages, only threads has a predefined meaning, defining, along
with processes-per-node, how many nodes the scheduler will assign. The other four are actually just
variables that you can use to represent anything. Their meaning depends entirely upon their placement
within the command line template.

-t sooner.lsf

Although PetaKit’s developers seek to make their software work on all machines, many clusters, and
especially their schedulers, have requirements that are difficult to predict. For this reason, StatKit
uses what are called ”script templates” for telling PetaKit how to communicate with a given system’s
scheduler. script templates use the template system just like the command line template, but are slightly
more complicated. Run

perl stat.pl —-help

for more information.
--database text

This tells PetaKit to dump its data into a text file to be read by PlotKit or copied into a Microsoft
Excel sheet. This is good for running PetaKit on a local machine where one can easily view the data
produced.

——proxy-output

The above code is designed for collecting data from a program that is equipped to provide the relevant
output. Programs that are not so designed can still be evaluated via PetaKit using the —proxy-output
command. Be aware that data proxy-output cannot figure out itself will be returned as dummy values.
For example, cputime is always 0 when proxy-output is enabled.



6 Plotting PetaKit output with PlotKit

PlotKit aims to achieve for graphing PetaKit data what PetaKit does for collecting it. Assuming your
output was sent to the default file in your stats folder, output.txt, to graph it give PlotKit the following
command.

perl PlotKit.pl \

--independent threads --dependent walltime \
--datafile stats/output.txt \

myRun

Where independent and dependent indicate the columns from which to take the independent and
dependent values. Take a look at your datafile to identify what the names of the columns are.
The last argument is the tag that you gave your data.

7 Outfitting C Programs for PetaKit

Although with the latest version of PetaKit it is not strictly necessary, there are a number of reasons
one might want to outfit one’s code for use with PetaKit.

e If you outfit your code, you can have the program automatically tell StatKit what its name is, its
version number, and more. Normally it must be supplied on the command line.

e You can calculate CPU time by calculating it within the program and outputting it. Proxy-output
just gives a CPU time of zero because it can’t track all the processes of a parallel program from
the outside.

e You get more precise control of what you choose to time. rather than being limited to recording
the runtime of your entire program, you can time any particular part of your code. This can be
useful if you want to isolate your biggest time hogs.

Modifying a program to supply PetaKit-compatible output is simple. All you need is your program’s
source code and access to the PetaKit C library, included in this module.
1. Get the pkit.h and pkit.c files and place them with your program’s source.

2. Include pkit.h in your source, and make sure your makefile makes an object file (pkit.o) of pkit.c
and pkit.h

3. At the beginning of your main function, type startTimer();*

4. At the point in your code where all the most important pieces have finished running, place the
expression time = stopTimer() .

5. After that, include the printStats function, explained in the following section

7.1 printStats

printStats(program name,threads,style of parallelism,problem size,version number, time,
cputime, number of additional variables to be printed ...)

1. The first seven arguments to printStats() are required output that will be expected by the PetaKit
data harvester.

2. Next is the count of whatever other values you would like your program to print - most likely for
debug purposes.

3. For each additional printout, specify two arguments:

(a) The label, which includes the type of the variable
(b) The variable itself.

'This starts the timer for accurate wall time



7.1.1 Extra variables for printStats

Three general classes of variable are supported -
e s: string (stored as char®)
e i: integer (stored as long long int)
e d: double (stored as long double)

The first letter of the label is stripped and read as the variable type, so, say number of timesteps
would be input as:

iTIMESTEPS, (long long int) num_timesteps
This prints as:

TIMESTEPS : <number of timesteps>

7.1.2 Example

Here’s an example of a call to printStats in an instance of John Conway’s Game of Life written in C.

printStats("Life",life.size,"mpi",life.ncols * life.nrows, "1.3", time, O, 3, "iCOLUMNS",
(long long int) life.ncols, "iROWS", (long long int)life.nrows, "iGENERATIONS",
(long long int)life.generations);

And the output:

177" #+xBEGIN RESULTS**#~ "~

PROGRAM : Life
HOSTNAME : Sam’s Computer
THREADS 01
ARCH : mpi
PROBLEM_SIZE : 11025
VERSION : 1.3
CPUTIME : 0
TIME : 3.979
COLUMNS : 105
ROWS : 105
GENERATIONS : 1000

177 #+xEND RESULTS**#~"~ "



8 Laboratory - How to use StatKit

8.1 Prerequisites

e Prior experience using UNIX command-line interface.

e Knowledge of how to use the parallel processing environment (cluster and scheduler or personal

computer)

8.2 Materials

e Computer (1 per student)
o Parallel Processing Environment?

o UPEP PetaKit Module

8.3 Procedure

Instruct students to take their own parallel programs and, using PetaKit and the included documenta-
tion, observe how well they scale up to sixteen processors®. A simple Reimann sum program (area-mpi.c)
is included for this purpose, should your students have no parallel programs of their own. The included
program requires some variant of the message passing interface (MPI), preferably openMPI, in order to

run. A README file in the sample program folder walks the user through the build process.

8.4 Questions

1. How does your program scale? Is it how you expected it to scale?
2. What’s the name of the curve that your program’s scaling takes?

3. If you were to use, instead of sixteen, say, one hundred processors, how much less time would your

program take? How about one thousand processors? one million? (See Amdahl’s Law?)

4. What could you do with your program to take better advantage of one million processors? (See

Gustafson’s Law®)

8.5 Assessing Student Understanding

After completing this assignment, your student should have an understanding of how to use StatKit and

the concepts behind both Amdahl’s and Gustafson’s laws. He or she should be able to explain to you

2A cluster is ideal for this purpose, but if one is not available, nearly all modern computers have at least two cores, which
can serve as a very small-scale parallelization environment

3or more or fewer depending on hardware availability and teacher preference

4Amdahl’s Law: http://en.wikipedia.org/wiki/Amdahl’s_law

SGustafson’s Law: http://en.wikipedia.org/wiki/Gustafson’s_law



in what situations it would and would not be helpful to assign additional processors to running his or

her program.
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