Parallelization: Area Under a Curve
By Aaron Weeden, Shodor Education Foundation, Inc.

I. Abstract

This module teaches: 1) How to approximate the area under a curve using a
Riemann sum, 2) how approximating the area under a curve is used in solutions to
scientific problems, 3) how to implement parallel code for Area Under a Curve (including
versions that use shared memory via OpenMP, distributed memory via the Message Passing
Interface (MPI), and hybrid via a combination of MPI and OpenMP), 4) how to measure the
performance and scaling of a parallel application in multicore and manycore environments,
and 5) how Area Under a Curve falls into the MapReduce “dwarf” (a class of algorithms that
have similar communication and computation patterns).

Upon completion of this module, students should be able to: 1) Understand the
importance of approximating the area under a curve in modeling scientific problems, 2)
Design a parallel algorithm and implement it using MPI and/or OpenMP, 3) Measure the
scalability of a parallel code over multiple or many cores, and 4) Explain the
communication and computation patterns of the MapReduce dwarf.

[t is assumed that students will have prerequisite experience with C or Fortran 90,
Linux/Unix systems, and modular arithmetic.

II. Area Under a Curve: Motivation and Introduction

Calculating the area under a curve is an important task in science. The area under a
concentration-time curve is used in neuroscience to study changes in endocrine levels in
the body over time [1]. In economics, the area under a curve is used in the study of
discounting to determine the fee incurred for delaying a payment over time [2]. Besides
these two examples, there are many applications of the area under a curve in many fields of
science, including pharmacokinetics and clinical pharmacology [3][4], machine learning
[5], medicine [6][7], psychiatry and psychology [8], chemistry [9], environmental science
[10], fisheries and aquatic sciences [11], and many others.

The calculus developed by Isaac Newton and Gottfried Leibniz in the 17t century
allows for the exact calculation of the area of simple curves through integration, but for
many functions integrals do not exist for finding the area under their curves, or these
integrals cannot be used to find the area in a reasonable number of steps. To compensate
for this, other techniques can be used that provide acceptable approximations for the area
under a curve. This module considers the Riemann method of integration, developed by
Bernhard Riemann in the 19t century for approximating the area under a curve.

The specific Riemann method explored in this module involves dividing the domain
over which we are integrating into segments of equal width that serve as the bases of

Parallelization: Area Under a Curve
Module Document
Page 1

rectangles!. The heights of the rectangles correspond to the y-value of the function for an
x-value found somewhere within the rectangles’ widths. The sum of the areas of the
rectangles formed by this method is the approximation of the area under the curve. This
module considers the Left Riemann sum, in which each rectangle has the height of the left-
most point of its width. A pictorial example of the Left Riemann sum is Figure 1.

S— /|

Figure 1: Using 6 rectangles to find a Left Riemann sum

For a small number of rectangles, calculations can be performed easily by hand or
using a calculator. Beyond just a few rectangles, however, the area needs to be
approximated using a computer. Many serial (non-parallel) algorithms for approximating
the area under the curve exist with many coded implementations. Such code, running on a
single computer, can calculate the areas of millions of rectangles in a Riemann sum in a
very small amount of time.

To approximate with even more rectangles, one needs to employ more processing
power than is available on a single processor. The concept of parallel processing can be
used to leverage the computational power of computing architectures with multiple or
many processors working together.

Quick Review Questions:
1. What does “left” refer to in the left Riemann sum?
2. What does “sum” refer to in the left Riemann sum?

II1. Introduction to Parallelism

In parallel processing, rather than having a single program execute tasks in a
sequence, the program is split among multiple “execution flows” executing tasks in parallel,
i.e. at the same time. The term “execution flow” refers to a discrete computational entity
that performs processes autonomously. A common synonym is “execution context”; “flow”
is chosen here because it evokes the stream of instructions that each entity processes.

1In a Riemann sum, it is not necessary for all rectangles to be of equal width. In fact, it can
be advantageous to have rectangles of different sizes to fit the curve better. For the
purposes of creating a simple model in this module, we will assume that all rectangles are
of equal width.
Parallelization: Area Under a Curve
Module Document
Page 2

Execution flows have more specific names depending on the flavor of parallelism
being utilized. In “distributed memory” parallelism, in which execution flows keep their
own private memories (separate from the memories of other execution flows), execution
flows are known as “processes”. In order for one process to access the memory of another
process, the data must be communicated, commonly by a technique known as “message
passing”. The standard of message passing considered in this module is defined by the
“Message Passing Interface (MPI)”, which defines a set of primitives for packaging up data
and sending them between processes.

In another flavor of parallelism known as “shared memory”, in which execution
flows share a memory space among them, the execution flows are known as “threads”.
Threads are able to read and write to and from memory without having to send messages.2
The standard for shared memory considered in this module is OpenMP, which uses a series
of directives for specifying parallel regions of code to be executed by threads.3

A third flavor of parallelism is known as “hybrid”, in which both distributed and
shared memory are utilized. In hybrid parallelism, the problem is broken into tasks that
each process executes in parallel; the tasks are then broken further into subtasks that each
of the threads execute in parallel. After the threads have executed their sub-tasks, the
processes use the shared memory to gather the results from the threads, use message
passing to gather the results from other processes, and then move on to the next tasks.

Quick Review Questions:
3. What is the name for execution flows that share memory? For those with
distributed memory?
4. What is “message passing” and when is it needed?

IV. Parallel hardware

In order to use parallelism, the underlying hardware needs to support it. The classic
model of the computer, first established by John von Neumann in the 20t century, has a
single CPU connected to memory. Such an architecture does not support parallelism
because there is only one CPU to run a stream of instructions. In order for parallelism to
occur, there must be multiple processing units running multiple streams of instructions.
“Multi-core” technology allows for parallelism by splitting the CPU into multiple compute
units called cores. Parallelism can also exist between multiple “compute nodes”, which are
computers connected by a network. These computers may themselves have multi-core

2 It should be noted that shared memory is really just a form of fast message passing.
Threads must communicate, just as processes must, but threads get to communicate at bus
speeds (using the front-side bus that connects the CPU to memory), whereas processes
must communicate at network speeds (ethernet, infiniband, etc.), which are much slower.
3 Threads can also have their own private memories, and OpenMP has directives to define
whether variables are public or private.

Parallelization: Area Under a Curve
Module Document
Page 3

CPUs, which allows for hybrid parallelism: shared memory between the cores and message
passing between the compute nodes.

Quick Review Questions:
5. Why is parallelism impossible on a von Neumann computer?
6. Whatis a “core”?

V. Motivation for Parallelism

We now know what parallelism is, but why should we use it? The three motivations
we will discuss here are speedup, accuracy, and scaling*. These are all compelling
advantages for using parallelism, but some also exhibit certain limitations that we will also
discuss.

“Speedup” is the idea that a program will run faster if it is parallelized as opposed to
executed serially. The advantage of speedup is that it allows a problem to be modeled>
faster. If multiple execution flows are able to work at the same time, the work will be
finished in less time than it would take a single execution flow. Speedup is an enticing
advantage. The limitations of speedup will be explained later.

“Accuracy” is the idea of forming a better solution to a problem. If more processes
are assigned to a task, they can spend more time doing error checks or other forms of
diagnostics to ensure that the final result is a better approximation of the problem that is
being modeled. In order to make a program more accurate, speedup may need to be
sacrificed.

“Scaling” is perhaps the most promising of the three. Scaling says that more parallel
processors can be used to model a bigger problem in the same amount of time it would
take fewer parallel processors to model a smaller problem. A common analogy to this is
that one person in one boat in one hour can catch a lot fewer fish than ten people in ten
boats in one hour.

As stated before, there are issues that limit the advantages of parallelism; we will
address two in particular. The first, communication overhead, refers to the time that is lost
waiting for communications to take place before and after calculations. During this time,
valuable data is being communicated, but no progress is being made on executing the
algorithm. The communication overhead of a program can quickly overwhelm the total
time spent modeling the problem, sometimes even to the point of making the program less

4 Another noteworthy advantage of parallelism, not discussed in much detail here, is that it
can be used for applications that require larger amounts of memory than is available on a
single system. In such cases, by splitting up the memory among multiple computers, any
one computer is able to store less data than it would have to in the serial algorithm.
5> Note that we refer to “modeling” a problem, not “solving” a problem. This follows the
computational science credo that algorithms running on computers are just one tool used
to develop approximate solutions (models) to a problem. Finding an actual solution may
involve the use of many other models and tools.
Parallelization: Area Under a Curve
Module Document
Page 4

efficient than its serial counterpart. Communication overhead can thus mitigate the
advantages of parallelism.

A second issue is described in an observation put forth by Gene Amdahl and is
commonly referred to as “Amdahl’s Law”. Amdahl’s Law says that the speedup of a parallel
program will be limited by its serial regions, or the parts of the algorithm that cannot be
executed in parallel. Amdahl’s Law posits that as the number of processors devoted to the
problem increases, the advantages of parallelism diminish as the serial regions become the
only parts of the code that take significant time to execute. Amdahl’s Law is represented as
an equation in Figure 2.

where
P = the proportion of the program that can be made parallel
1 - P = the proportion of the program that cannot be made parallel
N = the number of processors

Figure 2: Amdahl’s Law

Amdahl’'s Law provides a strong and fundamental argument against utilizing
parallel processing to achieve speedup. However, it does not provide a strong argument
against using it to achieve accuracy or scaling. The latter of these is particularly promising,
as it allows for bigger classes of problems to be modeled as more processors become
available to the program. The advantages of parallelism for scaling are summarized by
John Gustafson in Gustafson’s Law, which says that bigger problems can be modeled in the
same amount of time as smaller problems if the processor count is increased. Gustafson’s
Law is represented as an equation in Figure 3.

Speedup(N)=N-(1-P)*(N-1)
where
N = the number of processors
(1 - P) = the proportion of the program that cannot be made parallel

Figure 3: Gustafson’s Law
Parallelization: Area Under a Curve
Module Document
Page 5

Amdahl’'s Law reveals the limitations of what is known as “strong scaling”, in which
the number of processes remains constant as the problem size increases. Gustafson’s Law
reveals the promise of “weak scaling”, in which the number of processes varies as the
problem size increases. We will further explore the limitations posed by Amdahl’s Law and
the possibilities provided by Gustafson’s Law in Section VIII.

Quick Review Questions:
7. What is Amdahl’s Law? What is Gustafson’s Law?
8. What is the difference between “strong scaling” and “weak scaling”?

VI. The parallel algorithm

The parallel algorithm is designed with hybrid parallelism in mind. There will be
some number of processes, each of which has some number of threads. As we'll see, the
shared memory version of the algorithm can be refined out of the hybrid version by
assuming only one process with multiple threads. The distributed memory version can be
refined out of the hybrid version by assuming multiple processes, each with only one
thread. The serial version can also be refined out of the hybrid version by assuming only
one total process with one total thread.

Students can develop the algorithm themselves while reading this module by
completing Exercise 1, an attachment to this module.

In order to introduce the parallel algorithm, a good first step is to identify the
algorithm'’s data structures. Data structures consist of constants (structures whose values
do not change throughout the course of the algorithm) and variables (structures whose
values do change). In hybrid parallelism, data structures can be private to each thread,
global to the threads in a process but private from other processes, or global to all
processes.

A good method for identifying data structures is to draw and label a picture of the
problem being modeled by the algorithm. This helps give a clear visual representation of
the problem. An example of a labeled picture of the left Riemann sum is in Figure 4.

Parallelization: Area Under a Curve
Module Document
Page 6

H
a0 a1 fa2 [a3]at|a5|,_ g

Figure 4: A picture of the left Riemann sum algorithm

After identifying the data structures, a good next step is to describe what they are
and give them names. This helps to represent the data structures in writing, and it will be
useful when we translate the algorithm in pseudocode later. An example of naming data

structures is in Table 1.

Data structures
Label in picture | Written Representation | Name
A The function under whose | FUNC()
curve we are
approximating the area
B The total number of NUMBER OF_
rectangles RECTANGLES
C The overall width of the WIDTH
domain of the function
D The left x-boundary X_LEFT

Parallelization: Area Under a Curve

Module Document
Page 7

E The width of a rectangle RECTANGLE_
WIDTH

F The height of the current current_rectangle_
rectangle height

G The x-value of the left side | current_rectangle_left
of the current rectangle

H The identifier of the current_rectangle_id
current rectangle

[The right x-boundary X _RIGHT

J The array of the areas of areas|]
the rectangles

K The total sum of the areas | the_total_sum
of all the rectangles

Table 1: Written representation of data structures

There are also data structures that control the parallelism. Any parallel algorithm is
likely to have data structures like these. These are listed in Table 2.

Data structures that control parallelism
Written Representation | Name

The rank® of a process RANK

The number of processes NUMBER_OF_PROCESSES
The thread number’ of a THREAD_NUM

thread
The number of threads NUMBER_OF_THREADS

Table 2: Written representation of data structures

After we have a written representation of the data structures, we next indicate their
scope, which tells whether they are public or private to the threads and processes that use
them. One way to indicate scope is by changing the name of the data structures. If the data
structure is public to all processes, its name does not change. If the data structure is public
to all threads but private to each process, the word “our” is prepended to the front.8 If the
data structure is private to each thread, the word “my” is prepended to the front. An

6 “Rank” is the terminology used by MPI to indicate the ID number of a process.
7 “Thread number” is the terminology used by OpenMP to indicate the ID number of a
thread.
8 We take a thread-centric view here, because threads are the lowest form of execution flow
in the hybrid parallelism we are using. From a thread’s perspective, a public data structure
is something that is shared among other threads like it. A thread would thus say that it is
“our” data structure.
Parallelization: Area Under a Curve
Module Document
Page 8

example of name changes is summarized in Table 3. Note that some data structures have
been added because they are private copies of other, public data structures. These are
indicated with asterisks (*) for their old names.

Data Structures

Old Name New Name
FUNC() FUNC()
NUMBER_OF_ NUMBER_OF_
RECTANGLES RECTANGLES
* OUR_NUMBER_OF_
RECTANGLES
WIDTH WIDTH
* OUR_WIDTH
X_LEFT X_LEFT
* OUR_X_LEFT
RECTANGLE_ RECTANGLE_
WIDTH WIDTH
current_rectangle_ my_current_rectangle_
height height

current_rectangle_left

my_current_rectangle_left

current_rectangle_id

my_current_rectangle_id

X_RIGHT

X_RIGHT

*

OUR_X_RIGHT

areas| |

our_areas| |

the_total_sum

the_total_sum

*

our_total_sum

RANK OUR_RANK
NUMBER_OF_PROCESSES | NUMBER_OF_PROCESSES
THREAD_NUM MY_THREAD_NUM

NUMBER_OF_THREADS

OUR_NUMBER_OF_THREADS

Table 3: Name changes for indicating scope of data structures

After identifying the scope of the data structures, the next step is to identify how and
when they interact. We start with how they interact and look to represent these
interactions both in writing and through equations. This helps us get one step closer to
representing the algorithm in pseudocode. An example of this is in Table 4.

Interactions of Data Structures
Written Representation Equation Representation
The width of the domain of the function is WIDTH = X_RIGHT - X_LEFT
the difference of the right and left x-

Parallelization: Area Under a Curve
Module Document
Page 9

boundaries.

The width of a rectangle is overall width of | RECTANGLE_WIDTH =

the domain of the function divided by the WIDTH /

overall number of rectangles. NUMBER_OF_RECTANGLES

The number of rectangles for which a OUR_NUMBER_OF_

process is responsible is determined by RECTANGLES =

dividing the number of rectangles by the NUMBER_OF_RECTANGLES/

number of processes.? NUMBER _OF PROCESSES

If there are leftover rectangles, the last if OUR_RANK ==

process is responsible for them. NUMBER_OF_PROCESSES -1,
then OUR_NUMBER_OF_
RECTANGLES =
OUR_NUMBER_OF_
RECTANGLES + NUMBER_OF_
RECTANGLES mod
NUMBER_OF_PROCESSES

The left x-boundary of a process’s OUR_X_LEFT = (OUR_RANK *

rectangles is obtained by multiplying the (NUMBER_OF_RECTANGLES /

rank of the process by the number of NUMBER_OF_PROCESSES)) *

rectangles for which each process is RECTANGLE _WIDTH +

responsible, and adding it to the overall left | X LEFT

x-boundary.

The x-value of the current rectangle’s left my_current_rectangle_left =

side is obtained by calculating how many OUR_X_LEFT +

rectangle widths it is away from that my_current_rectangle_id *

rectangle’s thread’s process’s left x- RECTANGLE_WIDTH

boundary.

The height of a rectangle is obtained by my_current_rectangle_

using the x-value of the left side of that height = FUNC(my_current_

rectangle to evaluate the function under rectangle_left)

whose curve we are approximating the area.

The area of a rectangle is obtained by our_areas[my_current_

multiplying the width of the rectangle by rectangle_id] =

the height of the rectangle. RECTANGLE_WIDTH *
my_current_rectangle_
height

The total sum of the areas of the rectangles | our_total_sum = our_areas[0]

for which a process is responsible is +our_areas[1] + ... +

obtained by adding the areas of that our_areas[OUR_NUMBER_

9 It should be noted that if the number of rectangles is less than the number of processes,
the last process will receive all of the rectangles, which is not an efficient method. For
simplification purposes, we will assume in this module that the number of rectangles is
greater than or equal to the number of processes. If the number of rectangles is greater
than the number of processes, the decimal of the result is removed.
Parallelization: Area Under a Curve
Module Document
Page 10

process’s rectangles.

OF_RECTANGLES - 1]

The total sum is the sum of all the areas of
the rectangles of all the processes.

For each process,

the_total sum = the_total sum

+ our_total_sum

Table 4: Interactions of data structures

Now that we know how the data structures interact with each other, we next

identify when they should interact with each other. “When” refers here to both “during
which step of the algorithm” and “under which conditions.” To indicate when the
interactions should take place, we use each row in a table as a step of the algorithm. In the
second column of the table, we indicate the conditions under which the step takes place.
We also indicate how many times the step should take place, and which threads and
processes should execute the step. An example of this is Table 5.

Steps of the algorithm (order of interactions)

Step Interaction Condition Number | Which Which
oftimes | process? | thread?

0 WIDTH = X_RIGHT - always 1 all 0
X_LEFT

0 OUR_NUMBER_OF_ always 1 all 1 mod
RECTANGLES = OUR_NUM
NUMBER_OF_ BER_OF_T
RECTANGLES/ HREADS
NUMBER_OF_
PROCESSES

0 OUR_X LEFT = always 1 all 2 mod
(OUR_RANK * OUR_NUM
(NUMBER_OF_ BER_OF_T
RECTANGLES/ HREADS
NUMBER_OF_
PROCESSES)) *
RECTANGLE_WIDTH +
X_LEFT

1 RECTANGLE_WIDTH = always 1 all 0
WIDTH / NUMBER_OF_
RECTANGLES

1 OUR_NUMBER_OF_ always 1 NUMBER_ | 1 mod
RECTANGLES = OF_PROC | OUR_NUM
OUR_NUMBER_OF_ ESSES-1 | BER_ OF_T
RECTANGLES + HREADS

NUMBER_OF_
RECTANGLES mod
NUMBER_OF_

Parallelization: Area Under a Curve
Module Document

Page 11

PROCESSES

my_current_rectangle_ always Once for | all all
left = OUR X LEFT + each
my_current_rectangle_ rectangle

id * RECTANGLE_WIDTH

my_current_rectangle_ always Once for all all
height = each

FUNC(my_current_ rectangle

rectangle_left)

our_areas[my_current_ always Once for | all all
rectangle_id] = each

RECTANGLE_WIDTH * rectangle
my_current_rectangle_

height

our_total_sum = always Once for all 0
our_total_sum + each
our_areas[my_current_ rectangle

rectangle_id]

the total sum = always Once for 0 0
the_total_sum + each

our_total_sum process

Table 5: Steps of the parallel algorithm

The table of steps gives us an outline for the algorithm that we can now translate
into pseudocode. Interactions that need to happen multiple times are represented by loops
in this pseudocode. An example of such pseudocode is shown in Figure 5.

All processes do the following:
0-1) Calculate the overall width of the domain of the
function and the width of a rectangle.

0-1)

If MY THREAD NUM == 0,
WIDTH = X RIGHT - X LEFT
RECTANGLE WIDTH = WIDTH / NUMBER OF RECTANGLES

Calculate the number of rectangles for which the

process is responsible.

If MY THREAD NUM == (1 mod OUR NUMBER OF THREADS),
OUR_NUMBER OF RECTANGLES = NUMBER OF RECTANGLES/
NUMBER OF PROCESSES

If OUR RANK == NUMBER OF PROCESSES - 1,
OUR_NUMBER OF RECTANGLES = OUR NUMBER OF RECTANGLES
+ NUMBER OF RECTANGLES mod NUMBER OF PROCESSES

0) Calculate the left x-boundary of the process.

If MY THREAD NUM == (2 mod OUR NUMBER OF THREADS),

Parallelization: Area Under a Curve
Module Document
Page 12

* OUR X LEFT = (OUR RANK * (NUMBER OF RECTANGLES/
NUMBER OF PROCESSES)) * RECTANGLE WIDTH + X LEFT
2-4) For each rectangle, parallelized by thread,
2) Calculate the x-value of the left side of the
rectangle:
* my current rectangle left = OUR X LEFT +
my current rectangle id * RECTANGLE WIDTH
3) Calculate the height of the rectangle:
* my current rectangle height =
FUNC (my current rectangle left)
4) Calculate the area of the rectangle:
* our areas[my current rectangle id] =
RECTANGLE WIDTH * my current rectangle height
5) Calculate the total sum for the process.
* If MY THREAD NUM == 0,
¢ for each rectangle,
* our total sum = our total sum +
our areas[my current rectangle id]
6) Calculate the overall total sum.
* Each process sends our total sum to Rank 0
Rank 0 adds sums to the total sum

Figure 5: Pseudocode for the algorithm

Note that steps 2-4 have been combined into one loop. Note also that step 6
contains the only communication of the algorithm; each process sends data to Rank 0.

We have now completed the process of defining the algorithm and developing
pseudocode for it.

VII. Code implementation

Now that the pseudocode has been developed, the code can be implemented. It
should first be noted that MPI processes each execute the entire code, but OpenMP threads
only execute the sections of code for which they are “spawned”, or created. This means
that sections of code will only be executed with shared memory parallelism if they are
contained within parallel OpenMP regions, but all code will be executed with distributed
memory parallelism (except for sections of the code contained in conditionals that are only
executed by a process of a certain rank).

Before delving into this section, it is likely to be helpful to first run through Exercise
2 (an attachment to this module).

For serial programmers, the most confusing sections of the code are likely to be the
MPI functions and OpenMP regions. The MPI functions that are used in the code are listed

Parallelization: Area Under a Curve
Module Document
Page 13

and given explanations in Table 6. MPI_Reduce() is a bit more complicated (it takes a value
from each of the processes, performs a calculation using all those values, and stores the
result in a variable owned by Rank 0), so it is explored in more detail in Figure 6. The
relevant OpenMP regions and functions are listed and given explanations in Table 7.

MPI Function Explanation
MPI_Init() This initializes the MPI

environment. It mustbe
called before any other MPI
functions.
MPI_Comm_rank() This assigns the rank of the
process in the specified
communicator to the
specified variable.
MPI_Comm_size() This assigns the number of
processes in the specified
communicator to the
specified variable.
MPI_Reduce() This takes a value from each
process and performs an
operation on all the values.
The result is stored in a
variable owned by one of the
processes.

MPI_Finalize() This cleans up the MPI
environment. No other MPI
functions may be called after
this one.

Table 6: MPI Functions used by the code

Parallelization: Area Under a Curve
Module Document
Page 14

Operate on this
variable from

Store the result Operate on this number
each process

in this variable of variables per process

MPI Reduce {(&our total sum, &the total sum, 1,
MPI DOUBLE, MPI SUM, 0, MPI COMM WORLD);

WAAAAAN

bttt

Expect the
variable to have
this type (note
the MP1_)

Use this communicator
(usually
MPI_COMM_WORLD)

Store on the
process with
this rank

Perform this
operation

CALL MPI REDUCE (our total sum, the total sum, 1, &
MPI DOUBLE PRECISION, MPI SUM, 0O, MPI COMM WORLD,
ierror)

T

(Fortran only) Store any
error codes in this variable

Figure 6: Details about the arguments to MPI_Reduce()

OpenMP pragma (C)

OpenMP region (Fortran
90)

Explanation

#pragma omp parallel

{
-

!$ OMP parallel

!$ OMP end parallel

This spawns a pre-
defined number of
threads and
parallelizes the
section (indicated
here by “...”).

omp_get_thread_num()

OMP_GET_THREAD_
NUM()

This returns the
number of threads
that have been
spawned in the

Parallelization: Area Under a Curve

Module Document
Page 15

parallel section in
which it is called.

#pragma omp parallel for I$ OMP parallel do This spawns a pre-
for(...) DO ... defined number of
{ threads and

END DO parallelizes the for
} I$OMP end parallel do loop.
#pragma omp parallel I$ OMP parallel private This spawns a pre-
private (...) (.) defined number of
{ I$ OMP end parallel threads and

parallelizes the

} section. Each thread
has a private copy of
each variable
specified.

Table 7: OpenMP regions and functions used by the code

The parallel code should be implemented step-by-step and in small pieces. To start
with, we look back at the constants, variables, and data structures, and decide how to
declare them in the language of our choice. If the language is strongly typed, like C or
Fortran90, the data type of the constant, variable, or data structure will need to be
determined. Also, if we decide to allocate the array dynamically as we do here, we make
sure to declare it as such. To guard against possible problems in the code later, we
initialize all of the constants and variables to default values. Our C code declares the
constants, variables, and data structures as in Figure 7, while our Fortran 90 code declares
them as in Figure 8.

/* Declare the constants, variables, and data
* structures. */

int OUR RANK = 0, OUR NUMBER OF THREADS = 1,
OUR NUMBER OF RECTANGLES = 0, NUMBER OF RECTANGLES = 10,
NUMBER OF PROCESSES = 1, MY THREAD NUM = O,
my current rectangle id = 0;

double OUR X LEFT = 0.0, X LEFT = 0.0, X RIGHT = 10.0,
WIDTH = 0.0, RECTANGLE WIDTH = 0.0, our total sum = 0.0,
the total sum = 0.0, my current rectangle left = 0.0,
my current rectangle height = 0.0;

double * our areas;

Figure 7: Declaration of constants, variables, and data structures in C

Parallelization: Area Under a Curve
Module Document
Page 16

! Declare the constants, variables, and data

! structures.

INTEGER :: OUR _RANK = 0, &
OUR_NUMBER OF THREADS = 1, &
OUR NUMBER OF RECTANGLES = 0, NUMBER OF RECTANGLES &
= 10 NUMBER OF PROCESSES = 1, &
MY THREAD NUM = 0, &
my current rectangle id = 0

DOUBLE PRECISION :: OUR X LEFT = 0.0, X LEFT = 0.0, &
X RIGHT = 10.0, WIDTH = 0.0, RECTANGLE WIDTH = &
0.0, our total sum = 0.0, the total sum = 0.0, &
my current rectangle left = 0.0, &
my current rectangle height = 0.0

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: & our_areas

Figure 8: Declaration of constants, variables, and data structures in Fortran 90

MPI requires that we initialize the environment before any MPI code is executed.
We then use MPI functions to determine the ranks of processes and number of processes.
These steps are shown in Figure 9 for C and in Figure 10 for Fortran 90.

/* Initialize the MPI environment */

MPI Init (&argc, &argv);

MPI Comm ran k (MP I COMM WORLD, &OUR RANK) ;

MPI Comm_size (MPI_COMM WORLD, &NUMBER OF PROCESSES) ;

Figure 9: MPI Initialization in C

! Initialize the MPI environment
CALL MPI INIT (ierror)
CALL MPI COMM RANK (MPI COMM WORLD, OUR RANK, ierror)
CALL MPI COMM SIZE (MPI COMM WORLD, &
NUMBER OF PROCESSES, ierror)

Figure 10: MPI Initialization in Fortran 90

Since we have chosen to allocate the array of areas dynamically, our next step is to
allocate memory for it. The allocation in our C and Fortran 90 codes are shown in Figures

11 and 12, respectively.

/* Allocate the array. */
our areas = (double*) malloc (NUMBER OF RECTANGLES *

sizeof (double)) ;

Parallelization: Area Under a Curve
Module Document
Page 17

Figure 11: Allocation of array in C

! Allocate the array.
allocate (our areas (NUMBER OF RECTANGLES))

Figure 12: Allocation of array in Fortran 90

Now that all of our constants, variables, and data structures have been declared
and/or allocated, we are ready to implement the algorithm, starting by translating steps 0-
1 of the pseudocode. The C code for steps 0-1 is in Figure 13, and the Fortran 90 code is in
Figure 14. Note the OpenMP parallel region.

#fpragma omp parallel

{
MY THREAD NUM = omp get thread num();

if (MY THREAD NUM == 0)
{
/* Calculate the overall width of the
* domain of the function and the width of a
* rectangle.
*/
WIDTH = X RIGHT - X LEFT;
RECTANGLE WIDTH = WIDTH /
NUMBER OF RECTANGLES;
}
if (MY THREAD NUM == 1 %
OUR_NUMBER OF THREADS)
{
/* Calculate the number of rectangles for
* which the process is responsible. */
OUR NUMBER OF RECTANGLES =
NUMBER OF RECTANGLES /
NUMBER OF PROCESSES;
if(OUR_RANK == NUMBER OF PROCESSES - 1)
{
OUR NUMBER OF RECTANGLES +=
NUMBER OF RECTANGLES %
NUMBER OF PROCESSES;

}

if (MY THREAD NUM == 2 %
OUR_NUMBER OF THREADS)

{

Parallelization: Area Under a Curve
Module Document
Page 18

/* Calculate the left x-boundary of the
* process. */
OUR X LEFT = (OUR_RANK *
(NUMBER OF RECTANGLES /
NUMBER OF PROCESSES)) +
X_LEFT;
}
} /* pragma omp parallel */

Figure 13: Steps 0-1 of the algorithm in C

!SOMP parallel
MY THREAD NUM = OMP_GET THREAD NUM ()

IF (MY THREAD NUM == 0) THEN

! Calculate the overall width of the

! domain of the function and the width of a

! rectangle.

WIDTH = X RIGHT - X LEFT

RECTANGLE WIDTH = WIDTH / &
NUMBER OF RECTANGLES

END IF
IF (MY THREAD NUM == MODULO (1, &
OUR_NUMBER OF THREADS) THEN

! Calculate the number of rectangles for

! which the process is responsible.

OUR NUMBER OF RECTANGLES = &
NUMBER OF RECTANGLES / &
NUMBER OF PROCESSES

IF (OUR_RANK == NUMBER OF PROCESSES - 1) THEN

OUR_NUMBER OF RECTANGLES = &
OUR NUMBER OF RECTANGLES +
MODULO (NUMBER OF RECTANGLES,
NUMBER _OF PROCESSES)
END IF
END IF
IF (MY THREAD NUM == MODULO (2, &
OUR_NUMBER OF THREADS)) THEN

! Calculate the left x-boundary of the

! process.

OUR X LEFT = (OUR RANK * &
(NUMBER OF RECTANGLES / &
NUMBER OF PROCESSES)) + &

X _LEFT
END IF

Parallelization: Area Under a Curve
Module Document
Page 19

!$ OMP end parallel

Figure 14: Steps 0-1 of the algorithm in Fortran 90

Because of their brevity and the fact that they exist in the same loop, we combine
steps 2-4. Note that the loop is parallelized among all the threads using the “parallel for”
OpenMP region. The C code for these steps is in Figure 15, and the Fortran 90 code is in
Figure 16.

#pragma omp parallel for private (my current rectangle
id, my current rectangle left, my current rectangle he
ight)
for (my current rectangle id = 0;

my current rectangle id <

OUR NUMBER OF RECTANGLES;

my current rectangle id++)

/* Calculate the x-value of the left side of the
* rectangle */
my current rectangle left = OUR X LEFT +
my current rectangle id * RECTANGLE WIDTH;

/* Calculate the height of the rectangle */
my current rectangle height =
FUNC (my current rectangle left);

/* Calculate the area of the rectangle */
our areas[my current rectangle id] =
RECTANGLE WIDTH *
my current rectangle height;

Figure 15: Steps 2-4 of the algorithm in C

!$ OMP parallel do private (my current rectangle id,
my current rectangle left, my current rectangle heigh
t)
DO my current rectangle id = 0, &
OUR_NUMBER OF RECTANGLES - 1, 1
! Calculate the x-value of the left side of the
! rectangle
my current rectangle left = OUR X LEFT + &
my current rectangle id * RECTANGLE WIDTH

! Calculate the height of the rectangle

Parallelization: Area Under a Curve
Module Document
Page 20

my current rectangle height = &
FUNC (my current rectangle left)

! Calculate the area of the rectangle
our areas (my current rectangle id + 1) = &
RECTANGLE WIDTH * &

my current rectangle height
END DO
!SOMP end parallel do

Figure 16: Steps 2-4 of the algorithm in Fortran 90

The penultimate step of the algorithm is step 5. Figure 17 is the C code for step 5,
and Figure 18 is the Fortran 90 code.

/* Calculate the total sum for the process */
for (my current rectangle id = 0;

my current rectangle id <

OUR NUMBER OF RECTANGLES;

my current rectangle id++)

our total sum +=
our areas[my current rectangle id];

Figure 17: Step 5 of the algorithm in C

! Calculate the total sum for the process
DO my current rectangle id = 1, &
OUR_NUMBER OF RECTANGLES, 1
our total sum = our total sum + &
our areas (my current rectangle id)
END DO

Figure 18: Step 5 of the algorithm in Fortran 90

Finally, step 6 of the algorithm calculates the total sum of all the areas of all the
rectangles. To accomplish this, all processes send their sums to Rank 0, and it calculates
the total sum. Figure 19 shows how the C version of MPI_Reduce() is used to find the total
sum, and Figure 20 shows how the Fortran 90 version is used.

/* Calculate the overall total sum */

Parallelization: Area Under a Curve
Module Document
Page 21

MPI Reduce (&our total sum, &the total sum, 1,
MPI DOUBLE, MPI SUM, 0, MPI COMM WORLD) ;

Figure 19: Step 6 of the algorithm in C

! Calculate the overall total sum

CALL MPI REDUCE (our total sum, the total sum, 1, &
MPI DOUBLE PRECISION, MPI SUM, 0, MPI COMM WORLD,
ierror)

Figure 20: Step 6 of the algorithm in Fortran 90

We have now finished the algorithm as described by the pseudocode. In order to
obtain the result of the total sum, our code prints the final value. Also, because we have
chosen to allocate the array of areas dynamically, we should deallocate it before the end of
the program to avoid a memory leak. We also need to finalize the MPI environment. These
final steps are shown in Figure 21 for C and in Figure 22 for Fortran 90

/* Print the total sum */
if (OUR _RANK == 0)
printf (“%$f\n”, the total sum);

/* Deallocate the array */
free (our_ areas);

/* Finalize the MPI environment */
MPI Finalize();

Figure 21: Printing the result, deallocating the array, and finalizing the MPI environment in C

! Print the total sum

IF (OUR_RANK == 0) THEN
PRINT *, the total sum
END IF

! Deallocate the array
DEALLOCATE (our_ areas)

! Finalize the MPI environment
CALL MPI FINALIZE (ierror)

Figure 22: Printing the result, deallocating the array, and finalizing the MPI environment in Fortran
90

Parallelization: Area Under a Curve
Module Document
Page 22

This completes the parallel code for approximating the area under the curve. The
code is available in its entirety as attachments to this module. A Makefile is also attached to
facilitate easy compilation of the code. Note that the code uses #ifdefs to surround sections
of MPI and OpenMP code. This allows all four versions of the program (serial, MP],
OpenMP and Hybrid) to be built from the same source code.

Students should now be able to run the code using various input parameters. The
attached code allows for command line arguments to the function, which specify the
number of rectangles, the left x-boundary, and the right x-boundary. See the block
comment at the beginning of the code for documentation on using these command-line
options.

VIII. Scaling the algorithm

Now that we have developed a parallel algorithm, a natural next question is, “does
the algorithm scale?” Because of the limitations revealed by Amdahl’s Law, we can be
assured that the algorithm will not scale far if we merely increase the number of cores
devoted to the problem (strong scaling); the code will initially run faster but will see
diminished returns as communication overhead overwhelms the total amount of time
spent running the code. As the number of processes or threads increases with a fixed
number of rectangles, each process or thread will have less and less work to do. However,
Gustafson’s Law promises that if we increase the problem size as we increase the core
count (weak scaling), we will be able to model a bigger problem in the same amount of
time. The goal of this section is to see if strong scaling of our parallel code fails as predicted
by Amdahl’s Law and to see if weak scaling of our parallel code succeeds as predicted by
Gustafson’s Law.

Exercise 3 (an attachment to this module) describes how to scale the code on a
cluster. The results of this exercise are likely to produce something like Table 8 and Table
9, which were produced by following Exercise 3’s instructions.

of # of Total # | Total # of Serial OpenMP | MPI Hybrid
nodes cores of cores | Rectangles
used per

node

used
1 1 1 100,000,000 | 3.006 0.745 2.402 0.888
1 2 2 100,000,000 | 3.001 0.745 2.276 2.175
1 4 4 100,000,000 | 3.008 0.803 1.719 2.892
2 1 2 100,000,000 1.401 0.585
2 2 4 100,000,000 1.828 1.029
2 4 8 100,000,000 1.527 2.799
4 1 4 100,000,000 0.827 0.426

Parallelization: Area Under a Curve
Module Document
Page 23

4 2 8 100,000,000 1.541 1.976
4 4 16 100,000,000 1.434 2.907
8 1 8 100,000,000 0.577 0.371
8 2 16 100,000,000 1.444 2.016
8 4 32 100,000,000 1.669 2.960
Table 8 - Strong Scaling

of # of Total # | Total # of Serial OpenMP | MPI Hybrid
nodes cores of cores | rectangles
used per

node

used
1 1 1 100,000,000 | 3.010 0.745 2.399 0.865
1 2 2 200,000,000 | 6.023 1.441 3.418 2.641
1 4 4 400,000,000 |12.014 | 2.823 3.439 4.084
2 1 2 200,000,000 2.636 0.961
2 2 4 400,000,000 2.654 2.893
2 4 8 800,000,000 3.702 4.440
4 1 4 400,000,000 2.674 1.020
4 2 8 800,000,000 3.702 3.079
4 4 16 1,600,000,000 3.734 4.500
8 1 8 800,000,000 3.723 1.235
8 2 16 1,600,000,000 3.740 3.073
8 4 32 3,200,000,000 1.366 2.892

Table 9 - Weak Scaling, 100,000,000 Rectangles per Core

Now that we have an idea of how the algorithm scales, we can extrapolate what we
have learned to a generalization of a larger classification of problems.

IX. Generalization of the algorithm using the Berkeley Dwarfs

The Berkeley “dwarfs”10 [12] are equivalence classes of important applications of
scientific computing. Applications are grouped into dwarfs based on their computation and
communication patterns. When an application is run in parallel, a certain percentage of
time is spent performing calculations, while another percentage is spent communicating
the results of those calculations. The dwarf captures the general trends of these
percentages.

10 The Berkeley group originally started with seven equivalence classes; the name “dwarf”
was chosen as an allusion to the seven dwarves in the Snow White fairy tale.
Parallelization: Area Under a Curve
Module Document
Page 24

The application of approximating the area under a curve falls into the MapReduce
dwarf. Applications in this class are characterized by a single function that is applied in
parallel to unique sets of data. In the case of area under a curve, the function is simply the
calculation of the area of a rectangle. The sets of data are the rectangles. In MapReduce
application, after the calculations have been mapped to the execution flows, they are
communicated to a single execution flow (usually Rank 0 or Thread 0), where they are
reduced, just as our area under the curve code does a final sum using MPI_Reduce of the
areas that were calculated by each process. Applications in the MapReduce dwarf are
“embarrassingly parallel,”1! because the calculations can be performed in their entirety
without need for communication in between. Communication happens once, at the end, to
perform the reduction.

Because the applications in the MapReduce dwarf have roughly the same
computation and communication patterns, it is likely that the results of our scaling exercise
could be generalized to all applications in the dwarf. In other words, if another MapReduce
application were to be scaled as we did in this module, the results would likely be similar.
A meaningful extension to this module would be to consider the scaling of other
applications in the MapReduce dwarf, comparing the results to those found in this module.

Quick Review Questions:
9. Whatis a Berkeley “dwarf”?

X. Post-assessment Rubric

This rubric is to gauge students’ knowledge and experience after using the materials
and completing the exercises presented in this module. Students can be asked to rate their
knowledge and experience on the following scale and in the following subject areas:

Scale

1 - no knowledge, no experience

2 - very little knowledge, very little experience

3 - some knowledge, some experience

4 - a good amount of knowledge, a good amount of experience
5 - high level of knowledge, high level of experience

Subject areas

Approximating the area under a curve
Serial (non-parallel) Algorithm Design
Parallel Algorithm Design

Parallel Hardware

MPI programming

OpenMP programming

Using a cluster

11 The term “embarrassingly parallel” refers to the fact that it is easy to parallelize the
problem (it would be embarrassing not to). The origin of the term is unknown.
Parallelization: Area Under a Curve
Module Document
Page 25

In addition, students are asked the following questions:

What did you find to be the most useful aspect of this module?

What did you find to be the least useful aspect?

What did you learn about that you would be excited to learn more about?
What did you find particularly unuseful or irrelevant?

B =

XI. Student project ideas

1) Describe another MapReduce application - one in which a set of instructions is mapped
to data and then reduced - and design a parallel algorithm for it.

2) Research two other Berkeley “dwarfs” and describe their communication and
computation patterns.

3) Write volume. c, which computes the volume under the graph of a function z = f(x,y),
over some rectangular region in the x-y plane. If the function is z = x * y, does your
program return an area of about 0.25 in the region from (x,y) = (0.0, 0.0) to (1.0, 1.0)?

Parallelization: Area Under a Curve
Module Document
Page 26

XII. References

[1] Pruessner, Jens C., Kirschbaum, Clemens, Meinlschmid, Gunther, and Hellhammer, Dirk
H. (October 2003). Two formulas for computation of the area under the curve
represent measures of total hormone concentration versus time-dependent change.
Psychoneuroendocrinology, 28(7), 916-931. doi:10.1016/S0306-4530(02)00108-7.

[2] Myerson,], Green, L., and Warusawitharana, M. (September 2001). Area under the
curve as a measure of discounting. Journal of the Experimental Analysis of Behavior,
76(2), 235-243. do0i:10.1901/jeab.2001.76-235.

[3] Dix, S. P., and others. (1996). Association of busulfan area under the curve with veno-
occlusive disease following BMT. Bone marrow transplantation, 17(2), 225-230.
Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=2975645

[4] Shaw, L. M., and others. (June 2000). Mycophenolic acid area under the curve values in
African American and Caucasian renal transplant patients are comparable. The
Journal of Clinical Pharmacology, 40(6), 624-633. Retrieved from
http://jcp.sagepub.com/content/40/6/624.short

[5] Bradley, Andrew P. (July 1997). The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159.
doi:10.1016/S0031-3203(96)00142-2.

[6] Le Floch, Jean-Pierre, Escuyer, Philippe, Baudin, Eric, Baudon, Dominique, and
Perlemuter, Léon. (February 1990). Blood Glucose Area Under the Curve:
Methodological Aspects. Diabetes Care, 13(2), 172-175.
doi:10.2337 /diacare.13.2.172

[7] Orenstein, D. M. and Kaplan R. M. (October 1991). Measuring the quality of well-being
in cystic fibrosis and lung transplantation: the importance of the area under the
curve. CHEST, 100(4), 1016-1018. doi:10.1378/chest.100.4.1016.

[8] Goldberg, D. P. and others. (1997). The validity of two versions of the GHQ in the WHO
study of mental illness in general health care. Psychological Medicine, 27, 191-197.
Retrieved from
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2527
1

[9] Gutowska, Anna. and others. (May 2005). Nanoscaffold Mediates Hydrogen Release
and the Reactivity of Ammonia Borane. Angewandte Chemie International Edition,
44(23),3578-3582. d0i:10.1002/anie.200462602.

Parallelization: Area Under a Curve
Module Document
Page 27

[10] Carnaval, Ana Carolina. (February 2009). Stability Predicts Genetic Diversity in the
Brazilian Atlantic Forest Hotspot. Science, 323(5915), 785-789.
d0i:10.1126/science.1166955.

[11] English, K. K., Bocking, R. C,, Irvine,]. R. (1992). A Robust Procedure for Estimating
Salmon Escapement based on the Area-Under-the-Curve Method. Canadian Journal
of Fisheries and Aquatic Sciences, 49(10), 1982-1989. doi:10.1139/f92-220.

[12] Asanovic, Krste and others. (2006). The landscape of parallel computing research: A
view from berkeley. University of California at Berkeley. Technical Report No.
UCB/EECS-2006-183.

Parallelization: Area Under a Curve
Module Document
Page 28

