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Main Objective:

Design and analyze efficient solution techniques for
hp—discontinous Galerkin discretizations of

-V (KVu)=f inQcR?
u=0 on Of).
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Let &, be a subdivision of €.

Discontinuous finite element space:
Dk(gh) = {U S L2(Q) : VE € &, U|E S Qk(E)}

Weak formulation of PDE: find uy, € Dy (&) such that
Vv € Dk(gh), Uh, / fo,

where the bilinear form a. is given by

e(un, v Z/KVUh \WEY /{{KVUh fie }H[v]
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method:
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B=RoA;'R{ +> R;A;'R]
j=1
R; are elliptic projection operators, and A ; are the restriction of
ac(-,-) to a subdomain ;.
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Parition the domain 2 = Uévzslﬁj, pick a coarse grid (Q%, Q% or
QSh)

QSh
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e Each term of B can be computed independently.

o The coarse grid operator (RgA;'RJ) is amenable to coarse
grain parallelism

e The fine grid operators (RjAjflR]T) are amenable to fine
grain parallelism
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e Global partition of mesh
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e Each layer of hexahedra is processed by MPI
e Layers are sent to coprocessors for fine grain parallelism

e Coarse grid is handled by a small number of MPI ranks
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