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Design and analyze efficient solution techniques for
hp−discontinous Galerkin discretizations of

−∇ · (K∇u) = f in Ω ⊂ Rd

u = 0 on ∂Ω.

Main Objective:



Discontinuous Galerkin Formulation

Let Eh be a subdivision of Ω.

Discontinuous finite element space:

Dk(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ Qk(E)}.

Weak formulation of PDE: find uh ∈ Dk(Eh) such that

∀v ∈ Dk(Eh), aε(uh, v) =

∫
Ω
fv,

where the bilinear form aε is given by

aε(uh, v) =
∑
E∈Eh

∫
E
K∇uh · ∇v −

∑
e∈Γh∪ΓD

∫
e
{{K∇uh · ~ne}}[[v]]

+ ε
∑

e∈Γh∪ΓD

∫
e
{{K∇v · ~ne}}[[uh]] +

∑
e∈Γh∪ΓD

σe
|e|β0

∫
e
[[uh]][[v]].
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This gives rise to a large sparse linear system:

A~u = ~f.

To solve this system we employ a Schwarz domain decomposition
method:

B = R0A
−1
0 RT

0 +

NS∑
j=1

RjA
−1
j RT

j

Rj are elliptic projection operators, and Aj are the restriction of
aε(·, ·) to a subdomain Ωj .
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Schwarz domain decomposition

Parition the domain Ω = ∪NS
j=1Ωj , pick a coarse grid (Ω2h, Ω4h, or

Ω8h)

Ω

Ω2h

Ω4h

Ω8h
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How does can we implement this in parallel?

B = R0A
−1
0 RT

0 +

NS∑
j=1

RjA
−1
j RT

j

• Each term of B can be computed independently.

• The coarse grid operator (R0A
−1
0 RT

0 ) is amenable to coarse
grain parallelism

• The fine grid operators (RjA
−1
j RT

j ) are amenable to fine
grain parallelism
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Hybrid computing strategy

• Global partition of mesh

• Each layer of hexahedra is processed by MPI

• Layers are sent to coprocessors for fine grain parallelism

• Coarse grid is handled by a small number of MPI ranks
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Closer look at mapping to coprocessor
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