Multilevel Solvers for Discontinuous Galerkin Methods

Maurice Fabien Matthew G. Knepley Béatrice M. Rivierè

Department of Computational and Applied Mathematics Rice University

June 10, 2016

Main Objective:

Design and analyze efficient solution techniques for $\ensuremath{hp}\xspace$ –discontinous Galerkin discretizations of

$$-\nabla \cdot (\mathbf{K} \nabla u) = f \quad \text{ in } \Omega \subset \mathbb{R}^d$$
$$u = 0 \quad \text{ on } \partial \Omega.$$

Let \mathcal{E}_h be a subdivision of Ω .

Let \mathcal{E}_h be a subdivision of Ω .

Discontinuous finite element space:

$$\mathcal{D}_k(\mathcal{E}_h) = \{ v \in L^2(\Omega) : \forall E \in \mathcal{E}_h, \ v|_E \in \mathbb{Q}_k(E) \}.$$

Let \mathcal{E}_h be a subdivision of Ω .

Discontinuous finite element space:

$$\mathcal{D}_k(\mathcal{E}_h) = \{ v \in L^2(\Omega) : \forall E \in \mathcal{E}_h, \ v|_E \in \mathbb{Q}_k(E) \}.$$

Weak formulation of PDE: find $u_h \in \mathcal{D}_k(\mathcal{E}_h)$ such that

$$\forall v \in \mathcal{D}_k(\mathcal{E}_h), \quad a_{\epsilon}(u_h, v) = \int_{\Omega} f v,$$

Let \mathcal{E}_h be a subdivision of Ω .

Discontinuous finite element space:

$$\mathcal{D}_k(\mathcal{E}_h) = \{ v \in L^2(\Omega) : \forall E \in \mathcal{E}_h, \ v|_E \in \mathbb{Q}_k(E) \}.$$

Weak formulation of PDE: find $u_h \in \mathcal{D}_k(\mathcal{E}_h)$ such that

$$\forall v \in \mathcal{D}_k(\mathcal{E}_h), \quad a_{\epsilon}(u_h, v) = \int_{\Omega} f v,$$

where the bilinear form a_ϵ is given by

$$\begin{split} a_{\epsilon}(u_h, v) &= \sum_{E \in \mathcal{E}_h} \int_E \mathbf{K} \nabla u_h \cdot \nabla v - \sum_{e \in \Gamma_h \cup \Gamma_D} \int_e \{\!\{ \mathbf{K} \nabla u_h \cdot \vec{n}_e \}\!\} [\![v]\!] \\ &+ \epsilon \sum_{e \in \Gamma_h \cup \Gamma_D} \int_e \{\!\{ \mathbf{K} \nabla v \cdot \vec{n}_e \}\!\} [\![u_h]\!] + \sum_{e \in \Gamma_h \cup \Gamma_D} \frac{\sigma_e}{|e|^{\beta_0}} \int_e [\![u_h]\!] [\![v]\!]. \end{split}$$

This gives rise to a large sparse linear system:

$$\mathbf{A}\vec{u} = \vec{f}$$
.

This gives rise to a large sparse linear system:

$$\mathbf{A}\vec{u} = \vec{f}$$
.

To solve this system we employ a Schwarz domain decomposition method:

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{i=1}^{N_S} \mathbf{R}_i \mathbf{A}_i^{-1} \mathbf{R}_j^T$$

This gives rise to a large sparse linear system:

$$\mathbf{A}\vec{u} = \vec{f}$$
.

To solve this system we employ a Schwarz domain decomposition method:

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{i=1}^{N_S} \mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T$$

 R_j are elliptic projection operators, and \mathbf{A}_j are the restriction of $a_\epsilon(\cdot,\cdot)$ to a subdomain Ω_j .

Schwarz domain decomposition

Parition the domain $\Omega=\cup_{j=1}^{N_S}\Omega_j$, pick a coarse grid $(\Omega^{2h},\,\Omega^{4h},\,$ or $\Omega^{8h})$

Schwarz domain decomposition

Parition the domain $\Omega=\cup_{j=1}^{N_S}\Omega_j$, pick a coarse grid $(\Omega^{2h},\,\Omega^{4h},\,$ or $\Omega^{8h})$

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{j=1}^{N_S} \mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T$$

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{j=1}^{N_S} \mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T$$

ullet Each term of B can be computed independently.

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{j=1}^{N_S} \mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T$$

- ullet Each term of B can be computed independently.
- The **coarse** grid operator $(\mathbf{R}_0\mathbf{A}_0^{-1}\mathbf{R}_0^T)$ is amenable to **coarse** grain parallelism

$$B = \mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T + \sum_{j=1}^{N_S} \mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T$$

- Each term of B can be computed independently.
- The **coarse** grid operator $(\mathbf{R}_0 \mathbf{A}_0^{-1} \mathbf{R}_0^T)$ is amenable to **coarse** grain parallelism
- The **fine** grid operators $(\mathbf{R}_j \mathbf{A}_j^{-1} \mathbf{R}_j^T)$ are amenable to **fine** grain parallelism

• Global partition of mesh

Global partition of mesh

• Global partition of mesh

• Each layer of hexahedra is processed by MPI

Global partition of mesh

- Each layer of hexahedra is processed by MPI
- Layers are sent to coprocessors for fine grain parallelism

Global partition of mesh

- Each layer of hexahedra is processed by MPI
- Layers are sent to coprocessors for fine grain parallelism
- Coarse grid is handled by a small number of MPI ranks

Closer look at mapping to coprocessor

