
Intermediate	 MPI	

Mobeen	 Ludin	

Overview	
•  Point-to-Point Communication
–  In point to point communication, one process sends a

message and one process receives it.

Overview	 (Cont.)	
!if (I am processor A) then !
!! !add a bunch of numbers !
!else if (I am processor B) then !
!! !multiply a matrix times a vector !
!end	

If I have my own brain, memory, and functional units
like (eyes, hands, legs, muscles, etc..) to get work
done on my own, then I could be doing work
independently of someone else.

Overview	 (Cont.)	
if (I am processor A) then !!
!call MPI_Send (X) !
else if (I am processor B) then !!
!call MPI_Recv (X) !
end !

•  Data stored on one computer is completely different from another
•  Cant read your mind: if you need something you ask for it

explicitly

Collec:ve	 Communica:on	

•  MPI collective operations allow all ranks (processes)
in a given communication context (communicator)
to talk to each other at the same time.

•  All ranks in the communicator must make the same
MPI call for the operation to succeed.

•  Collective operations are:
–  Provided for convenience
– Tuned for system performance

MPI	 Collec:ve	 Opera:on:	 Broadcast	
MPI_Bcast(void* buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm); !

Often when a process needs to communicate to all
other process in the communicator
(MPI_COMM_WORLD).

Example:
MPI_Bcast(&num_sub_intervals, 1,
MPI_INT, 0, MPI_COMM_WORLD);!

MPI	 Collec:ve	 Opera:on:	 Reduce	
MPI_Reduce(void* sbuf, void* rbuf, int
count, MPI_Datatype stype, MPI_Op op,
int root, MPI_Comm comm);!

•  Global reduction or combine operation	

•  The partial result in each process in the group is combined in one

specified process.
Example:
MPI_Reduce(&pi, &pi_val, 1, MPI_DOUBLE,
MPI_SUM, 0, MPI_COMM_WORLD);!

Monte	 Carlo	 PI	 es:ma:on	 	
The Exercise is to use MPI collective operations in a program that estimates pi.
In this method, the program generates N random points in the unit square.
Count how many points are in the quarter circle (C). Then PI is approximately

equal to the ratio (4 * C) / N.
It's important that each processor use DIFFERENT random numbers. One way to

ensure this is to have a single master processor generate all the random numbers,
and then divide them up.

More on Algorithm:
 http://en.wikipedia.org/wiki/Monte_Carlo_integration

Exercise:
In your MPI directory that you copied is a serial code (pi_MonteCarlo.c). Use the

MPI collective communication operations to parallelize this code.

