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ABSTRACT 
Massively Parallel Monte Carlo, an in-house computer code 

available at http://code.google.com/p/mpmc/, has been 

successfully utilized to simulate interactions between gas phase 

sorbates and various metal-organic materials. In this regard, 

calculations involving polarizability were found to be critical, and 

computationally expensive. Although GPGPU routines have 

increased the speed of these calculations immensely, in its 

original state, the program was only able to leverage a GPU’s 

power on small systems. In order to study larger and evermore 

complex systems, the program model was modified such that 

limitations related to system size were relaxed while performance 

was either increased or maintained. In this project, parallel 

programming techniques learned from the Blue Waters 

Undergraduate Petascale Education Program were employed to 

increase the efficiency and expand the utility of this code. 
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1. INTRODUCTION 
Metal-Organic Frameworks (MOFs) are highly porous, crystalline 

materials characterized by inorganic clusters, or nodes, connected 

via organic linkers. The linking molecules are roughly linear and 

force a relatively high level of space between the inorganic nodes. 

Consequently, these materials are remarkable in their high surface 

areas, which suggest great opportunities for applications such as 

gas storage via physisorptive processes. The ability to selectively 

control pore size, polarity and placement of functional groups on 

the linkers provides further opportunity for the engineering of 

materials suited for specific separations or catalytic activity. In 

order to rationally design such materials, it is desirable to 

understand how they work on a molecular level. For example, it 

would be useful to know how exactly how and why each node, 

linker or functional group’s place within the MOF improves or 

retards the process of interest. Additionally, the identification of 

non-existent MOFs with useful properties, or the identification of 

useful, overlooked properties on existent MOFs, is another widely 

held aim.  

 

To that end, accurate, efficient simulation of MOF materials is an 

area of active research. A program developed in-house, Massively 

Parallel Monte Carlo (MPMC), has demonstrated its effectiveness 

in MOF-centric and related simulations [1-3]. This program has 

been successfully employed to generate sorption isotherms for 

MOFs with high fidelity to experiment [1]. Crucial to the 

accuracy of such isotherms is a careful accounting of the 

polarization energy of the MOF, and, unfortunately, this task has 

proven to be a computational bottleneck [4]. Early versions of 

MPMC had a limited ability to utilize GPGPUs to perform these 

calculations. Although a significant performance boost was 

realized, the system size was constrained by the amount of shared 

memory on the card, effectively limiting the simulations to 

approximately 2000 atoms on the available hardware (a number 

only suitable for simulation of smaller MOF systems). 

 

2. BACKGROUND 
Polarization calculations in MPMC are conducted using the 

Thole-Applequist model [5, 6]. This model assigns each atomic 

site a point dipole whose interactions with all the other dipoles of 

the system are dictated by many-body polarization equations. 

Using a set of training molecules, a 3x3 polarizability tensor is 

calculated for each site. Then, in a static electric field, each 

dipole,  𝜇 , is thus represented by the product of the calculated 

polarizability tensor, α, and the field vector at that point, �⃗⃗�𝑠𝑡𝑎𝑡: 
 

𝜇 = 𝛼�⃗⃗�𝑠𝑡𝑎𝑡 (1) 
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In this model, the dipole for a molecule is then treated as a 

collection of N atomic-point dipoles, which are summed to give 

the net dipole for the set [4]: 

 

𝜇𝑚𝑜𝑙 =∑𝜇𝑖

𝑁

𝑖

= ∑𝛼𝑖

𝑁

𝑖

�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 (2) 

 

Here, 𝜇𝑖 is the dipole for an individual site, 𝛼𝑖 is the polarizability 

tensor for the site, and �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 is the electrostatic field vector at that 

point, for each site, i, in the molecule. The Thole-Applequist 

system is then treated as a collection of N dipoles and a dipole 

field tensor, 𝑇𝑖𝑗
𝛼𝛽

. The elements of T are the complete set of 

tensors describing every induced dipole-dipole interaction in the 

system [4]. The product of the dipole field tensor, T, and a system 

dipole results in the many-body induced-dipole contribution to the 

electric field, �⃗⃗�𝑖𝑛𝑑, at the dipole site. The dipole field tensor was 

designed to contain the entire induction contribution, allowing the 

assignment of a scalar point polarizability, 𝛼∘  for each site, 

instead of the polarizability tensor [4]: 

 

𝛼𝑖 �⃗⃗�𝑖
𝑠𝑡𝑎𝑡 =  𝛼𝑖

∘(�⃗⃗�𝑖
𝑠𝑡𝑎𝑡 + �⃗⃗�𝑖

𝑖𝑛𝑑) (3) 

 =  𝛼𝑖
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𝑠𝑡𝑎𝑡 − 𝑇𝑖𝑗
𝛼𝛽
𝜇𝑗) (4) 

 

If �⃗⃗⃗� is treated as a vector, each entry of which is one of the system 

dipoles (each of those a vector), equation (5) is the result. A 

similar “super vector” is formed by treating vectors of the static 

electric field (at a point in space corresponding to each of the 

dipoles) in an identical fashion, the result of which is equation (6). 
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Additionally, if matrices A and B are defined as 

 

𝐴 = [(𝛼∘)−1 + 𝑇𝑖𝑗
𝛼𝛽
] (7) 

𝐵 = 𝐴−1 (8) 

 

the problem is reduced to two compact matrix equations, (9) and 

(10). Matrix A is thus constructed such that each element is the 

3x3 matrix 𝑇𝑖𝑗. Each element of matrix B is also a 3x3 matrix—

the site polarizability tensor characterizing each site’s response to 

an electric field [4]. 

 

𝐴�⃗⃗⃗� = �⃗⃗⃗�𝑠𝑡𝑎𝑡 (9) 

�⃗⃗⃗� = 𝐵�⃗⃗⃗�𝑠𝑡𝑎𝑡  (10) 

 

The system dipoles can therefore be found by inverting matrix A 

(giving B) and solving equation (10) directly. However, the size 

of matrices required to model typical MOF systems renders the 

computation required for matrix inversion impractical. MPMC 

solves these equations by guessing at the value of each point 

dipole and solving equation (9) iteratively.  

 

3. MPMC 
 

3.1 Limitations of the Initial Solution 
MPMC typically solves for the system dipoles iteratively [7]. The 

initial guess for each dipole is simply the product of the scalar 

point polarizability and the electrostatic field vector at that point. 

Each dipole is considered sequentially, and is marginally 

corrected according to the induced contribution calculated using 

all the other dipoles in the system. This process is repeated for 

each dipole (thus concluding a single iteration), and the whole 

process is then repeated for the entire system until convergence to 

within a specified tolerance is realized. MPMC also has the ability 

to solve this problem through matrix inversion, but, as previously 

mentioned, this method is only viable for small systems. 

 

Additionally, the original version of MPMC included support for 

finding the system dipoles using a General Purpose Graphics 

Processing Unit (GPGPU) device. This algorithm performed the 

iterative process previously described with only a few key 

differences. First, each step of the calculation updated every 

dipole in the system, whereas the serial algorithm incorporated the 

Gauss-Seidel numerical iterative technique. In this method, newly 

calculated dipole data replaces old dipole data as soon as it 

becomes available. The new values are then used in calculating all 

the remaining dipoles in the system. This technique can 

significantly decrease convergence times, but since, in the parallel 

algorithm, all the newly calculated dipoles become available 

simultaneously, the Gauss-Seidel technique was not implemented. 

 

A test for convergence of the GPGPU polarization calculation was 

not implemented in the original version of MPMC. Hence, the 

computation would run for a preset number of iterations and 

results were delivered without any way of estimating their 

accuracy. 

 

Finally, simulations utilizing the GPGPU device were limited to 

2048 atoms due to the manner in which MPMC employed the 

GPU’s shared memory system. This constraint renders the 

GPGPU algorithm useful only in simulations of relatively small 

system size. A MOF simulator should ideally be able to handle 

system sizes of 10,000+ atoms in order to be useful for several 

MOFs of current and future interest to investigators. 

 

3.2 Updated Program Model 
Several changes to improve and expand the functionality of 

MPMC were realized.  

 

3.2.1 Maximum System Size Expansion 
The 2048 atom cap imposed on simulations was the first 

limitation addressed during the course of this project. In the 

updated program model, each GPU thread was assigned a single 

system dipole. Each thread calculates its dipole’s interaction with 

every other dipole in the system, and sums these interactions to 

arrive at the dipole vector to be used in the next iteration. Since 

Journal of Computational Science Education Volume 4, Issue 1

November 2013 ISSN 2153-4136 31



every thread needs access to the vector data of every other dipole, 

it only makes sense to load the dipole information into shared 

memory so that each thread in the block can access it. This 

precludes the need for each of these threads to access the data 

individually from global memory (a relatively time consuming 

process to be avoided when possible) [8]. However, since shared 

memory is fairly limited, it is impossible to fit all the dipole data 

in this memory system simultaneously (for moderate to large-

sized systems). This situation is amenable to a tiled model of data 

handling such that the complete set of dipole information resides 

in global memory and is moved in and out of shared memory as 

needed, one block at a time (FIGURE 1). Organizing the data in 

this manner shifts the limitation of system size from shared 

memory to one of global memory and/or maximum grid size. 

Obviously, the global memory of the GPGPU device must be 

large enough to hold dipole data for the entire system. However, 

since each thread is responsible for a dipole and each thread block 

executes a limited number of threads, the maximum grid size 

(which dictates the total number of blocks) is ultimately 

responsible for determining the maximum number of threads [8], 

and therefore the maximum number of dipoles (i.e. atoms). 

Fortunately, on current hardware, the system sizes imposed by 

these limitations number in the millions of atoms, thus 

transforming MPMC’s prohibiting considerations from those of 

system size to one of computational duration. 

 

3.2.2 Gauss-Seidel in Parallel 
The original GPGPU algorithm did not attempt to implement the 

Gauss-Seidel iterative method of using newly calculated dipole 

information in the calculations for later dipoles. From outside the 

GPU kernel, all the dipoles appear to be updated simultaneously, 

so a treatment of this nature simply is not possible. However, 

from inside the kernel, once a thread block has completed, it is 

possible for each thread to overwrite its value in global memory 

with its newly calculated value (FIGURE 2). This treatment will 

allow any subsequent calculations to use the latest available 

information for their own computations. This technique updates a 

block of dipoles at a time, and as such effects a coarse-grained 

version of the Gauss-Seidel method. Typically, several thread 

blocks will be executing concurrently and these blocks will not be 

able to take advantage each other’s updates, thus it is expected 

that this modification will only become significant on larger 

system sizes where only a small portion of the total number of the 

required thread blocks can run concurrently.  

 

3.2.3 Convergence Verification 
Prior to this work, MPMC set a fixed number of iterations for the 

GPGPU algorithm and the level of convergence obtained after this 

number of iterations was what any dependent calculations were 

forced to use. After extensive testing, it became apparent that, in 

many cases, the set number of iterations was sufficient for a high 

level of convergence. However, in some cases it was not. Worse, 

the program was unable to tell if a set of dipoles converged, so the 

user received no warning that their calculation may be suspect. 

 

From inside the kernel, before each thread updates its data in 

global memory (for Gauss-Seidel), modifications were made such 

that each thread now copies its original dipole data into a local 

register. The difference between the old dipole data and the newly 

calculated dipole is squared and stored in an output array which 

can then be examined by the function that launched the kernel. 

Outside the kernel, in the calling function, the transfer of the 

squared-difference data from the GPGPU device to the host 

machine can take a significant amount of time compared to a 

single iteration. In some cases, the transfer duration can take 

longer than a single iteration, more than doubling the length of the 

total calculation. To mitigate this effect, the squared dipole 

differences are only downloaded and examined after every tenth 

iteration.  

 

3.2.4 Energy Calculations in Parallel 
The Monte Carlo portion of MPMC aims to identify low-energy 

system configurations. As such, the purpose of calculating the 
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system dipoles is to quantify an energy contribution from 

polarization effects. The time required to calculate this energy 

tends to vary widely. Kinetic and coulombic energies are also 

considered and the combined time required for these calculations, 

depending on the duration of the polarization energy, can be 

mildly to highly significant by comparison. Finally, MPMC can 

calculate an energy contribution due to van der Waals effects. 

This computation relies on matrix diagonalization and, when 

utilized, invariably takes the longest of any of the calculations. 

Using the Open Multi-Processing API (OpenMP), MPMC is now 

able to split into three concurrent threads of execution, one of 

which is responsible for both the kinetic and coulombic energy 

calculation, another of which is responsible for the polarization 

energy calculation, and the last of which is responsible for 

calculating the van der Waals energy contribution. 

 

3.2.5 Van der Waals Calculations Using MAGMA 
The final modification made to MPMC was to utilize the Matrix 

Algebra on GPU and Multi-core Architectures library (MAGMA) 

in order to compute the van der Waals energy contribution. The 

original routine calls for a matrix diagonalization via the 

LAPACK routine dsyev_(). It was a simple matter to construct 

an alternate routine, to be used in the event that a GPGPU device 

was detected. The two routines were practically identical in all 

respects except that the new one makes a call to MAGMA’s 

magma_dsyevd() instead of to the equivalent LAPACK 

function. 

 

4. RESULTS 
The updated version of GPGPU portion of MPMC is able to 

reproduce the results of the original with perfect fidelity for 

system sizes less than or equal to 2048 atoms, in approximately 

the same amount of time. For larger systems, no direct 

comparison can be made since the older version is unable to 

produce a result, although the computation is performed six to 

eight times faster on the GPU than the CPU. Comparing GPU 

results against data obtained through matrix inversion, presumed 

exact, reveals that calculations on typical systems are within five 

percent error.  

 

Performance increases due to the multi-threaded, OpenMP 

handling of the energy calculations, though present, is difficult to 

quantify. The combined calculation time for the kinetic and 

coulombic contributions represents roughly 10 to 50 percent of 

the total calculation time, and this figure varies widely from 

iteration to iteration. Effectively, the total calculation time is now 

reduced to the duration of whichever calculation takes the longest 

(coulombic/kinetic, polarization, or van der Waals), plus a small 

penalty for the overhead required to establish the threads. On test 

systems, the net speedup of the multithreaded treatment was 

typically around 20 percent. 

 

The use of the MAGMA routine in the calculation of the van der 

Waals energies is able to exactly reproduce the LAPACK result. 

However, the calculations are completed in approximately half the 

time. 

 

5. FUTURE WORK 
The accuracy of the GPGPU polarization calculation is lower than 

ideal, on the order of three percent error. Different techniques are 

being tried in order to increase the accuracy of these results, as 

well as to decrease convergence times. Additionally, the version 

of MPMC under discussion was designed to simulate a crystalline 

material and a single species of sorbate. Currently, efforts are 

underway to modify the program such that it can simulate 

multiple sorbate species simultaneously introduced into the 

material. 

 

6. REFLECTIONS 
The summer portion of the Blue Waters Undergraduate Petascale 

Education Program (BW-UPEP) provided training and instruction 

at the Urbana-Champagne campus of the University of Illinois. 

During this program, various technologies and techniques for 

scientific coding on parallel and supercomputer architectures were 
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discussed and elucidated. Of particular interest to this project was 

the training on GPGPU programming through NVIDIA Compute 

Unified Device Architecture (CUDA) as well as the Open Multi-

processing API (OpenMP) maintained by the OpenMP 

Architecture Review Board. The workshop introduced students to 

various algorithmic models, concepts and issues that were 

particularly useful to the current project, such as deconstruction of 

large repetitious problems into loosely coupled blocks appropriate 

for efficient handling by GPGPU devices, concurrent processing 

of dissimilar tasks through multi-threading, and, perhaps most 

importantly, how to leverage both techniques within a single 

program. Resources for learning any one of the technologies 

abound, but an area where the program excelled was instruction 

on how to effectively harness all these technologies to work 

together within a single project. 

 

Through the work started during the BW-UPEP program, I was 

able to foster a deep understanding of the architecture sitting 

underneath the hood of various high performance computing 

systems. Whereas before, I had only superficial experience with 

supercomputers, I currently develop scientific software and 

perform research computation on my own university’s local 

research computing cluster, as well as on many of the computing 

systems made available through the NSF’s Extreme Science and 

Engineering Discovery Environment (XSEDE) project. Speaking 

from personal experience, I believe undergraduates who have an 

interest in scientific computing stand to gain a considerable 

amount of confidence, experience and expertise by attending such 

a program as the BW-UPEP. The abundant knowledge and 

support available during the development of various pedagogical 

codes, as well as the guidance received regarding submission of 

these jobs to actual work environments (research computing 

clusters of universities with ties to the program), made it much 

easier to “leave the nest” and create and submit my own 

computational jobs to world-class research computing facilities 

throughout the academic world.  

 

I am currently in the early stages of my Doctoral program in 

theoretical and computational chemistry at the University of 

South Florida, and the skills and knowledge acquired through the 

BW-UPEP program have definitely helped to jumpstart my career 

therein. The time saved by not having to start from scratch in 

learning the basics of HPC coding (or the ins-and-outs of 

interaction with research computing environments) may have 

shaved a semester or more off my time in graduate school. In 

classes oriented around high performance computation and 

scientific coding, I find that while my peers spend much of their 

time trying to frame the posed problems in a manner suitable for 

parallel computation, the practical experience gained through the 

Blue Waters program often allows me to skip this step and 

immediately begin to identify opportunities to make the code 

more efficient in terms of the low-level hardware, e.g. efficient 

use of cache, shared memory systems, coalesced memory 

accesses, etc. My association with the BW-UPEP has proven to be 

an invaluable advantage in this regard and my ardent gratitude 

toward the program remains steadfast. 
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