Sample Problems for Univariate and Bivariate Data Lesson

The following example problems can be used to help students differentiate between univariate and bivariate data.

- **1.** You have the ages of the 15 students at the park.
 - What type of data is it?
 - What would you use to display the data?
 - Write one sentence describing the data.

Student	Α	В	С	D	E	F	G	Н	F	G	Н	I	J	K	L
Age	5	6	9	12	15	10	6	13	14	7	12	11	16	14	7

- **2.** The teacher records students grades on a test and the number of days until their next birthday and wants to know if there is a relationship.
 - What type of data is this?
 - What would you use to display it?
 - Is there a relationship?

Student	Test Grade	Days until birthday
A	100	10
В	82	300
С	97	254
D	77	28
Е	84	211

Answer to Sample Problems

1.

- Univariate data because there is only one this that varies: age.
- Box Plot, Stem and Lear, Bar Graph, or Pie Chart
- Student answers will vary, but some sample answers include:
 - The average age of the students at the park is 10 and a half.
 - There are two 12 year-olds, two 7 year-olds, and two 14 year-olds, but those are the only modes.

2.

- Bivariate data because both the test score and the number of days until the student's birthday are changing.
- Scatter Plot
- No relationship
- This is the graph from the **Regression** applet for this data:

