Syntax for Entering Functions in Interactivate Activities

Numerical values entered should be accurately calculated from 10⁻⁸ to 10⁸. Numbers larger or smaller than these values produce unreliable results. You may use scientific notation for entering functions in the form: mantissa followed by an e followed by 10 raised to the desired power. For example 0.000032 would be input as 3.2e10^-5.

Functions and their compositions can be typed as follows:

Type the formula of the function you want to graph in the text box labeled f(x)=.

Function	Symbol	Examples (including combinations of functions)
addition	+	$\mathbf{x} + 3$ x plus three
subtraction	-	5 - x five minus x
multiplication	*	(x - 2)*x x times x minus two
division	/	3/x three divided by x
power	٨	x ³ - 1 x to the power of three minus one
power	**	x**3 - 1 x to the power of three minus one
π (pi)	pi	$sin(pi^*x) sin of \pi (pi) times x$
square root	sqrt()	<pre>sqrt(x-1) square root of x minus one</pre>
nth root (see * below)	x^(1/n)	x^(1/3) cube root of x
absolute value	abs()	abs (3 - x) absolute value of three minus x
positive part of the operand	ppo()	ppo(x+2) returns x+2 if x>0 and 0 if x<0
step	step()	step (\mathbf{x}) returns 1 if $x>0$ and 0 if $x<0$
e to the power of x	exp()	exp (x) e to the power of x
sine	sin()	sin(x**2) sine of x squared
cosine	cos()	$\cos(5 - x)$ cosine of five minus x
tangent	tan()	tan(x) tangent x
arcsine	asin()	2 *asin(x) two times arcsine x

© Copyright The Shodor Education Foundation, Inc. For more information, please visit <u>http://www.shodor.org/</u>

arccosine	acos()	acos(x) arccosine x
arctangent	atan()	atan(x) arctangent of x
hyperbolic sine	sinh()	<pre>sinh(1 - x) hyperbolic sine of one</pre>
		minus x
hyperbolic cosine	cosh()	cosh(10/x) hyperbolic cosine of ten
		divided by x
hyperbolic tangent	tanh()	tanh (x) hyperbolic tangent of x
natural logarithm	ln()	ln (x) natural logarithm of x
base 10 logarithm	log()	log(x + 5) base ten logarithm of x
		plus five

* When x is less than zero, the exponent must be written as a whole number or in fraction form, not a decimal. For instance, if you want to graph the fifth root of negative numbers, you must write $x^{(1/5)}$, **not** $x^{(0.2)}$.