Two Steps to the Finish Tally Table

Player's name and winning \#'s	\# of steps to the finish	Total \# of experiments	\# of experiments when the player won	Experimental probability of winning
Use the following formula for experimental probability: Experimental probability $=($ Number of games when the player won $) /($ Total number of games)				
-				
.				

The goal of this experiment is to see what happens to the probability of winning as the number of steps changes. Each group of students can have different number of steps but the same winning numbers for players. Later groups can compare their results. Here is an example of one such table:

Player's name and winning \#'s	\# of steps to the finish	Total \# of experiments	\# of experiments when the player won	Experimental probability of winning

Use the following formula for experimental probability:
Experimental probabiltiy $=($ Number of games when the player won) $/($ Total number of games)

Alice; 1,2	2	50	\|///////// ////			
			14			
John; 3,4,5,6			/\|//////// /	//////// /	//////// /I/I/I	$36 / 50=0.72$
			36			

